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Nonlinear Poisson equation :


−∆u = f (u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(NPE)

where
u ∈ H1

loc(Ω) ∩ C0(Ω) is a distributionnal solution.

f : [0, +∞) → R is a locally (or globally) Lipschitz continuous
function, with

f (0) ≥ 0.

Ω ⊂ RN is an epigraph bounded from below, i.e

Ω := {x = (x ′, xN) ∈ RN , xN > g(x ′)},

where g : RN−1 → R is a continuous function and bounded
from below.
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Nonlinear Poisson equation :

Aim : Prove the monotonicity of the solution of (NPE) (that
is ∂u

∂xN
> 0 in Ω).

Why :
Qualitatives properties (as one-dimensional symmetry),
Liouville-type theorems.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 3 / 37



Introduction
Monotonicity results in an epigraph

Liouville-type result

Presentation of the problem
Existing works

Nonlinear Poisson equation :

Aim : Prove the monotonicity of the solution of (NPE) (that
is ∂u

∂xN
> 0 in Ω).

Why :
Qualitatives properties (as one-dimensional symmetry),
Liouville-type theorems.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 3 / 37



Introduction
Monotonicity results in an epigraph

Liouville-type result

Presentation of the problem
Existing works

Nonlinear Poisson equation :

Aim : Prove the monotonicity of the solution of (NPE) (that
is ∂u

∂xN
> 0 in Ω).

Why :
Qualitatives properties (as one-dimensional symmetry),

Liouville-type theorems.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 3 / 37



Introduction
Monotonicity results in an epigraph

Liouville-type result

Presentation of the problem
Existing works

Nonlinear Poisson equation :

Aim : Prove the monotonicity of the solution of (NPE) (that
is ∂u

∂xN
> 0 in Ω).

Why :
Qualitatives properties (as one-dimensional symmetry),
Liouville-type theorems.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 3 / 37



Introduction
Monotonicity results in an epigraph

Liouville-type result

Presentation of the problem
Existing works

M.J.Esteban-P.L.Lions Existence and non-existence
results for semilinear elliptic problems in unbounded domains.
Proc. Roy. Soc. Edinburgh, 1982, 1-14.

Theorem (Esteban-Lions)
Let g ∈ C1(RN−1) such that

lim
|x ′|→+∞

g(x ′) = +∞,

and Ω its epigraph. Let f ∈ Liploc([0, +∞)) and u ∈ C2(Ω) be a
classical solution of (NPE).
Then u is monotone, i.e., ∂u

∂xN
> 0 in Ω.
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H. Berestycki, L.A. Caffarelli, L. Nirenberg.
Monotonicity for Elliptic Equations in Unbounded Lipschitz
Domains. Comm. Pure Appl. Math., 1997, 1089–1111.

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))
Assume N ≥ 2, f be an Allen-Cahn type function, Ω be a globally
Lipschitz epigraph and u ∈ C2(Ω) ∩ C0(Ω) be a bounded solution of
(NPE).
Then u is monotone, i.e., ∂u

∂xN
> 0 in Ω.

Example :

f (x) = x − x3.
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Farina Some results about semilinear elliptic problems on
half-spaces. Mathematics in Engineering., 2020, 709-721.

Theorem (A. Farina (2020))
Assume N ≥ 2, f ∈ Liploc([0, +∞)) such that f (0) ≥ 0 and
u ∈ C2(RN

+) ∩ C0(RN
+) be a solution of (NPE).

Suppose that

∀t > 0 ∃C(t) > 0, 0 ≤ u ≤ C(t) in RN−1 × [0, t].

Then u is monotone, i.e., ∂u
∂xN

> 0 in RN
+.
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Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a uniformly continuous epigraph bounded from below,
f ∈ Lip([0, +∞)) with f (0) > 0 and let u ∈ H1

loc(Ω) ∩ UC(Ω) be
distributionnal solution of (NPE)
Then u is monotone, i.e., ∂u

∂xN
> 0 in Ω.

•H1
loc(Ω) := {u : Ω 7→ R, u mesurable : u ∈ H1(Ω∩B(0, R)) ∀ R > 0}

•UC(S) the set of uniformly continuous functions defined on S.
•Weierstrass type functions :

gb,α(x) =
∞∑

n=1
b−nα cos(bnπx), where b > 1 is an integer and α ∈ (0, 1).

The function gb,α is uniformly continuous, bounded and nowhere
differentiable.
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Theorem (B., Farina, Sciunzi, 2025)
Let Ω be a globally Lipschitz continuous epigraph bounded from
below.
Assume f ∈ Lip([0, +∞)) with f (0) ≥ 0 and let
u ∈ C0(Ω) ∩ H1

loc(Ω) be a distributional solution to (NPE) such
that for any R > 0, there are positive numbers
A = A(R), B = B(R) such that

u(x) ≤ AeB|x | ∀ x ∈ Ω ∩ {xN < R} .

Then u is strictly increasing in the xN -direction, i.e., ∂u
∂xN

> 0 in Ω.
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Comments
1- If f ∈ Liploc([0, +∞)) and u is bounded on finite strips, that is,
for any R > 0,

∃C(R) > 0 , u(x) ≤ C(R) ∀x ∈ Ω ∩ {0 < xN < R}.

then the theorem holds true.

2- If f is not locally Lipschitz continuous then the previous
theorem does not hold.

f α-hölder (0 < α < 1) Solution of −∆u = f (u)

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 10 / 37
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Notations
•Σg

b = {x = (x ′, xN) ∈ RN : g(x ′) < xN < b},

•∀x = (x ′, xN) ∈ Σg
b , ub(x) = u(x ′, 2b − xN).

Aim : Prove that
Λ := {t > 0 : u ⩽ uθ in Σg

θ , ∀ 0 < θ < t} = R+
∗ .
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Λ = R+
∗

∂u
∂xN

(x ′, b) = lim
h→0

u(x ′, b + h) − u(x ′, b)
h ,

and, since b + h
2 ∈ Λ we have

u(x) ≤ ub+ h
2
(x) for all x ∈ Σg

b+ h
2
.

In particular, as (x ′, b) ∈ Σg
b , we get u(x ′, b) ≤ u(x ′, b + h).
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Λ ̸= ∅

Definition (Open sets with good section)
An open set Ω ⊂ RN has a good section in direction eN if it
satisfies the following conditions :

1- For any R > 0 ; we have

CeN (R) = (B′(0′, R) × ReN) ∩ Ω is a bounded subset of RN .

2-

sup
x ′∈RN−1

(SeN
x ′ ) := sup

x ′∈RN−1
(L1(({x ′} × ReN) ∩ Ω)) < +∞
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Introduction
Monotonicity results in an epigraph

Liouville-type result

Results and comments
The moving plane method
Extensions to merely continuous epigraphs

Λ ̸= ∅

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 14 / 37



Introduction
Monotonicity results in an epigraph

Liouville-type result

Results and comments
The moving plane method
Extensions to merely continuous epigraphs

Λ ̸= ∅

Theorem (B., Farina, Sciunzi (2025))

Assume δ, γ ≥ 0, N ≥ 2 and let Ω be an open subset of RN with good
section in the direction eN , such that

sup
x ′∈RN−1

( ∫
SeN

x′

|xN |2δe2γ|xN |dxN

)
< +∞. (1)

Let f ∈ Lip(R), a > 0 and u, v ∈ H1
loc(Ω) ∩ C0(Ω) such that

−∆u − f (u) ≤ −∆v − f (v) in D′(Ω),
|u|, |v | ≤ a|x |δeγ|x | in Ω,

u ≤ v on ∂Ω.

Then, there exists ε = ε(Lf , γ) > 0 such that

SeN (Ω) < ε =⇒ u ≤ v in Ω.
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Λ ̸= ∅
Let b < 1 and apply previous theorem with Ω = Σg

b , v = ub.

Then

sup
x ′∈RN−1

( ∫
SeN

x′

|xN |2δe2γ|xN |dxN
)

< e2γbb2δ+1, for any γ, δ ≥ 0.

and 
−∆u − f (u) = 0 = −∆ub − f (ub) in D′(Σb

g),
|u|, |ub| ≤ a|x | in Σb

g ,

u ≤ ub on ∂Σb
g .
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t̃ := sup Λ = +∞
Proposition (t̃ < +∞)
For every δ ∈ (0, t̃

2) there is ε(δ) > 0 such that

∀ ε ∈ (0, ε(δ)) u ≤ ut̃+ε in Σg
δ,t̃−δ

.
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Proof of Proposition
If the claim were not true, there would exist δ ∈ (0, t̃

2) such that

∀ k ≥ 1 ∃ εk ∈
(

0,
1
k

)
, ∃ xk ∈ Σg

δ,t̃−δ
: u(xk) > ut̃+ϵk (xk),

and so
0 ≤ g((xk)′) < g((xk)′) + δ ≤ xk

N ≤ t̃ − δ.

thus xk
N → x∞.

Let gk(x ′) = g((xk)′ + x ′), we have{
(gk)k∈N is uniformly equicontinuous on RN−1, since g ∈ UC(RN−1),
0 ≤ gk(0′) < t̃.

By Ascoli-Arzelà theorem, there exists g∞ ∈ UC(RN−1) such that

gk → g∞ in C0
loc(RN−1).
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Proof of proposition

We fix Ωk := {xN > gk(x ′)} and Ω∞ := {xN > g∞(x ′)}, and

ũ(x) :=
{

u(x) if x ∈ Ω,
0 if RN\Ω.

Then ũ ∈ UC(RN) (since u ∈ UC(Ω)) and the sequence
ũk(x) := u((xk)′ + x ′, xN) satisfies{

(ũk)k∈N is uniformly equicontinuous on RN ,
ũk(0′, −1) = 0 ( since (0′, −1) ∈ {xN < 0}).

By Ascoli-Arzelà theorem, there exists ũ∞ ∈ C0(RN) such that

ũk → ũ∞ in C0
loc(RN).
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ũ(x) :=
{

u(x) if x ∈ Ω,
0 if RN\Ω.
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Then ũ ∈ UC(RN) (since u ∈ UC(Ω)) and the sequence
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Proof of proposition
Now, let u∞ := ũ∞|Ω∞ . Then u∞ satisfies the following

u∞ ∈ C2(Ω∞) ∩ C0(Ω∞)
−∆u∞ = f (u∞) in Ω∞,

u∞ ≥ 0 in Ω∞,
u∞ = 0 on ∂Ω∞,

u∞(0′, x∞) = u∞,t̃(0′, x∞)

The last inequality is due to

•u ≤ ut̃ in Σg
t̃ , hence ũk ≤ ũk,t̃ in Σgk

t̃ . Thus

u∞ ≤ u∞,t̃ in Σg∞
t̃ and (0′, x∞) ∈ Σg∞

t̃ .

•ũk(0′, xk
N) = u(xk) > ut̃+εk (xk) = ũk,t̃+εk (0′, xk

N) so, taking the
limit as k → +∞, we have

u∞(0′, x∞
N ) ≥ u∞,t̃(0′, x∞

N ).
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Proof of proposition

By the maximum principle, either

u∞ ≡ 0 in Ω∞, hence f (0) = 0 ⇒⇐

or u∞ > 0 in Ω∞.In this case, w = u∞,t̃ − u∞ satisfies
−∆w ≥ −Lf w in X ,

w ≥ 0 in X ,
w(0′, x∞) = 0.

where X ⊂ Σg∞
t̃ is the connected component of Σg∞

t̃ containing
(0′, x∞).Therefore

w ≡ 0 in X , i.e. u∞ ≡ u∞,t̃ in X .
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Summary

{
(0, ε) ∈ Λ,

t̃ := sup Λ = +∞,
⇒ Λ = R+

∗ ⇒ ∂u
∂xN

(x) ≥ 0 for x ∈ Ω.

Now, we will prove that

∂u
∂xN

(x) > 0 for any x ∈ Ω.
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Hopf’s Lemma

Theorem (Hopf’s lemma)
Let X a smooth domain, x0 ∈ ∂X and let ν be the exterior unit
normal to X at x0. Let w ∈ C2(X ) ∩ C1(X ∩ {x0}) such that

−∆w + cw ≥ 0 in X ,
w > 0 in X ,

w(x0) = 0.

Then
∂w
∂ν

(x0) < 0.
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Hopf’s Lemma

Let (x ′, b) ∈ Ω and let r > 0 such that B((x ′, b), r) ⊂ Ω
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Hopf’s Lemma
Applying the Hopf’s lemma with X = Σg

b ∩ B((x ′, b), r),
x0 = (x ′, b), ν = eN and w = ub − u which satisfies

w > 0 in X , (since Λ = R+
∗ and by the maximum principle.)

and

−∆w = −∆ub + ∆u = f (ub) − f (u) ≥ −Lf w in Σg
b .

As w(x ′, b) = 0, we have

0 >
∂w
∂xN

(x ′, b) = −2 ∂u
∂xN

(x ′, b).

Therefore
∂u
∂xN

(x ′, b) > 0.
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Definition of class G
Definition (Class G)
Assume N ≥ 2. We say that a continuous function g : RN−1 7→ R
belongs to the class G, if it satisfies the following compactness
property
(P) Any sequence (gk) of translations of g, which is bounded at
some fixed point of RN−1, admits a subsequence converging
uniformly on every compact sets of RN−1.

Example :
Uniformly continuous functions on RN−1.
Coercive continuous functions on RN−1.
Functions g : RN−1 → R such that there exists a continuous
bijection Φ : R → R such that Φ ◦ g ∈ G. As

x → ex .
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Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a uniformly continuous epigraph bounded from below,
f ∈ Lip([0, +∞)) with f (0) > 0 and let u ∈ H1

loc(Ω) ∩ UC(Ω) be
distributionnal solution of (NPE)
Then u is monotone, i.e., ∂u

∂xN
> 0 in Ω.

Theorem (B., Farina, Sciunzi, 2025)
Let N ≥ 2 and let Ω be an epigraph bounded from below and
defined by a function g ∈ G. Assume f ∈ Lip([0, +∞)) with
f (0) > 0. If u ∈ UC(Ω) ∩ H1

loc(Ω) is a distributional solution to
(NPE).
Then u is strictly increasing in the xN -direction, i.e., ∂u

∂xN
> 0 in Ω.
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Theorem (B., Farina, Sciunzi, 2025)
Let Ω be a globally Lipschitz continuous epigraph bounded from
below. Assume f ∈ Lip([0, +∞)) with f (0) ≥ 0 and let
u ∈ C0(Ω) ∩ H1

loc(Ω) be a distributional solution to (NPE) with at
most exponential growth on finite strips.
Then u is strictly increasing in the xN -direction, i.e., ∂u

∂xN
> 0 in Ω.

Theorem (B., Farina, Sciunzi, 2025)
Let N ≥ 2 and let Ω be an epigraph defined by a function g ∈ G.
Also suppose that Ω is bounded from below and satisfies
a uniform exterior cone condition.
Assume f ∈ Lip([0, +∞)) with f (0) ≥ 0 and let
u ∈ C0(Ω) ∩ H1

loc(Ω) be a distributional solution to (NPE) with at
most exponential growth on finite strips. Then u is strictly
increasing in the xN -direction, i.e., ∂u

∂xN
> 0 in Ω.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 29 / 37



Introduction
Monotonicity results in an epigraph

Liouville-type result

Results and comments
The moving plane method
Extensions to merely continuous epigraphs

Idea of the proof

We define in Ωk ,

vk(x) = u(x ′ + (xk)′, xN)
u(xk) = uk(x)

αk

it satisfies 
−∆vk = f (αkvk)

αk
:= fk(vk) in Ωk ,

vk = 0 in ∂Ωk ,
vk(0′, xk

N) = 1.

Exterior cone condition implies that vk ∈ C0,α(Cgk (0′, R/2, T ))
and ∥vk∥C0,α(Cgk (0′,R/2,T )) ≤ C (11 pages)
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We fix K := B′(0′, R/2) × [−T , T ] and

ṽk(x) =
{

vk(x) if x ∈ Cgk (0′, R/2, T ),
0 if x ∈ K\Cgk (0′, R/2, T ).

By Ascoli-Arzela, there exist v∞ ∈ C0,α(K) such that ṽk → v∞ in
C0(K) and it solves.

−∆v∞ = f∞(v∞) in Cg∞(0′, R/2, T ),
v∞ ≥ 0 in Cg∞(0′, R/2, T ),
v∞ = 0 in {xN = g∞(x ′)} ∩ K,

v∞(0′, x∞) = 1 and v∞(0′, x∞) = v∞,t̃(0′, x∞)
By the maximum principle apply v∞, we have

v∞ > 0 in Cg∞(0′, R/2, T ).
By the maximum principle apply to v∞,t̃ − v∞ we have

v∞ = v∞,t̃ in Σg∞
t̃ ∩ K.
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Theorem (B., Farina, Sciunzi (2025))
Let Ω ⊂ RN be a globally Lipschitz continuous epigraph bounded
from below, and u ∈ C2(Ω) ∩ C0(Ω) be a bounded solution to

−∆u = f (u) in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω.

Assume that f ∈ C1([0, +∞)), f (t) > 0 for t > 0 and
2 ≤ N ≤ 11, then u ≡ 0 and f (0) = 0.

Corollary
Let 2 ≤ N ≤ 11 and Ω ⊂ RN be a globally Lipschitz continuous epigraph
bounded from below.
If f ∈ C1([0, +∞)), satisfies f (t) > 0 for t ≥ 0 then problem (NPE)
does not admit any classical solutions of class C2(Ω) ∩ C0(Ω).
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Proof

By the maximum principle, either u ≡ 0 and f (0) = 0 and the
proof is complete, or

u > 0 in Ω.

Hence ∂u
∂xN

> 0 in Ω and as 0 ≤ u ≤ M := sup
Ω

u, the function

v(x ′) = lim
xN→∞

u(x ′, xN) exists and solves


v ∈ C2(RN−1)
−∆v = f (v) in RN−1,
0 ≤ v ≤ M in RN−1,
M = sup

RN−1
v .

and v is stable, (
∫
RN−1 f ′(v)ϕ2 ≤

∫
RN−1 |∇ϕ|2).
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RN−1 |∇ϕ|2).
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Proof

Theorem (Dupaigne, Farina, 2022)
Assume that u ∈ C2(Rp) is bounded below and that u is a stable
solution of

−∆u = f (u) in Rp.

where f : R :→ R is locally Lipschitz and nonnegative. If
1 ≤ p ≤ 10, then u must be constant.

Therefore, v = M > 0 and f (M) = 0 ⇒⇐.
Remarks : This theorem is sharp. Indeed if p ≥ 11, for f (u) = uk ,
k sufficiently large, there exists nontrivial positive bounded stable
solution to the equation. (see [5]).

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 36 / 37



Introduction
Monotonicity results in an epigraph

Liouville-type result

Proof

Theorem (Dupaigne, Farina, 2022)
Assume that u ∈ C2(Rp) is bounded below and that u is a stable
solution of

−∆u = f (u) in Rp.

where f : R :→ R is locally Lipschitz and nonnegative. If
1 ≤ p ≤ 10, then u must be constant.

Therefore, v = M > 0 and f (M) = 0 ⇒⇐.

Remarks : This theorem is sharp. Indeed if p ≥ 11, for f (u) = uk ,
k sufficiently large, there exists nontrivial positive bounded stable
solution to the equation. (see [5]).

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 36 / 37



Introduction
Monotonicity results in an epigraph

Liouville-type result

Proof

Theorem (Dupaigne, Farina, 2022)
Assume that u ∈ C2(Rp) is bounded below and that u is a stable
solution of

−∆u = f (u) in Rp.

where f : R :→ R is locally Lipschitz and nonnegative. If
1 ≤ p ≤ 10, then u must be constant.

Therefore, v = M > 0 and f (M) = 0 ⇒⇐.
Remarks : This theorem is sharp. Indeed if p ≥ 11, for f (u) = uk ,
k sufficiently large, there exists nontrivial positive bounded stable
solution to the equation. (see [5]).

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 36 / 37



Introduction
Monotonicity results in an epigraph

Liouville-type result

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 37 / 37



Introduction
Monotonicity results in an epigraph

Liouville-type result

N. Beuvin, A. Farina, B. Sciunzi. Monotonicity for solutions to
semilinear problems in epigraphs. arXiv :2502.04805v1, 7 Feb 2025.
H. Berestycki, L.A. Caffarelli, L. Nirenberg.
Monotonicity for elliptic equations in an unbounded Lipschitz
domain. Comm. Pure Appl. Math. 50, 1089-1111 (1997).

H. Berestycki, L.A. Caffarelli, L. Nirenberg. Further
qualitative properties for elliptic equations in unbouded domains.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15, 1997, 69-94.

A. Farina. Some results about semilinear elliptic problems on
half-spaces. Mathematics in Engineering (2020), Volume 2, Issue 4 :
709-721
A. Farina. On the classification of solutions of the Lane-Emden
equation on unbounded domains on RN . J. Math. Pures Appl. 87
(2007), 537-561.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 37 / 37



Introduction
Monotonicity results in an epigraph

Liouville-type result

B. Gidas, W-M. Ni, L. Nirenberg. Symmetry and related
properties via the maximum principle. Commun. Math. Phys. 68,
209-243 (1979).

J. Serrin, H. Zou. Symmetry of ground states of quasilinear
elliptic equations. Arch. Ration. Mech. Anal., 148, 265-290, (1999).

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 37 / 37


	Introduction
	Presentation of the problem
	Existing works

	Monotonicity results in an epigraph
	Results and comments
	The moving plane method
	Extensions to merely continuous epigraphs

	Liouville-type result

