Monotonicity results for solutions of nonlinear Poisson equation in epigraphs

Nicolas Beuvin, LAMFA

MAP seminar

26 June 2025, Pau

joint work with Alberto Farina (LAMFA-UPJV) and Berardino Sciunzi (University of Calabria)

Presentation of the problem Existing works

Introduction

- Presentation of the problem
- Existing works

2 Monotonicity results in an epigraph

- Results and comments
- The moving plane method
- Extensions to merely continuous epigraphs

3 Liouville-type result

Presentation of the problem Existing works

Nonlinear Poisson equation :

$$\Delta u = f(u)$$
 in Ω ,
 $u > 0$ in Ω ,
 $u = 0$ on $\partial \Omega$,

where

• $u \in H^1_{\text{loc}}(\overline{\Omega}) \cap C^0(\overline{\Omega})$ is a distributionnal solution.

(NPE)

Presentation of the problem Existing works

Nonlinear Poisson equation :

$$\begin{cases}
-\Delta u = f(u) & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(NPE)

where

- $u \in H^1_{\text{loc}}(\overline{\Omega}) \cap C^0(\overline{\Omega})$ is a distributionnal solution.
- $f:[0,+\infty) \to \mathbb{R}$ is a locally (or globally) Lipschitz continuous function, with

 $f(0) \ge 0.$

Presentation of the problem Existing works

Nonlinear Poisson equation :

$$\begin{pmatrix} -\Delta u = f(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
 (NPE)

where

- $u \in H^1_{\text{loc}}(\overline{\Omega}) \cap C^0(\overline{\Omega})$ is a distributionnal solution.
- $f:[0,+\infty) \to \mathbb{R}$ is a locally (or globally) Lipschitz continuous function, with

 $f(0) \geq 0$.

• $\Omega \subset \mathbb{R}^N$ is an epigraph bounded from below, i.e

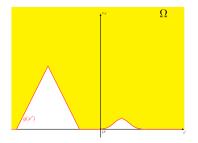
$$\Omega:=\{x=(x',x_N)\in\mathbb{R}^N, x_N>g(x')\},\$$

where $g: \mathbb{R}^{N-1} \to \mathbb{R}$ is a continuous function and bounded from below.

Introduction

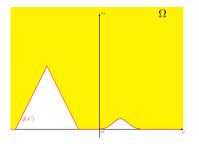
conicity results in an epigraph Liouville-type result Presentation of the problem Existing works

Nonlinear Poisson equation :



Presentation of the problem Existing works

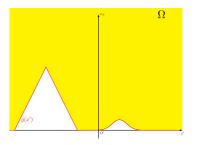
Nonlinear Poisson equation :



• <u>Aim</u>: Prove the monotonicity of the solution of (NPE) (that is $\frac{\partial u}{\partial x_N} > 0$ in Ω).

Presentation of the problem Existing works

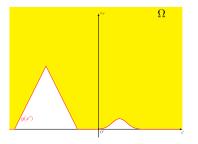
Nonlinear Poisson equation :



- <u>Aim</u>: Prove the monotonicity of the solution of (NPE) (that is $\frac{\partial u}{\partial x_N} > 0$ in Ω).
- <u>Why</u> :
 - Qualitatives properties (as one-dimensional symmetry),

Presentation of the problem Existing works

Nonlinear Poisson equation :



- <u>Aim</u>: Prove the monotonicity of the solution of (NPE) (that is $\frac{\partial u}{\partial x_N} > 0$ in Ω).
- <u>Why</u> :
 - Qualitatives properties (as one-dimensional symmetry),
 - Liouville-type theorems.

• M.J.ESTEBAN-P.L.LIONS Existence and non-existence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh, 1982, 1-14.

Theorem (Esteban-Lions)

Let $g \in C^1(\mathbb{R}^{N-1})$ such that

$$\lim_{|x'|\to+\infty}g(x')=+\infty,$$

and Ω its epigraph. Let $f \in Lip_{loc}([0, +\infty))$ and $u \in C^2(\overline{\Omega})$ be a classical solution of (NPE). Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Presentation of the problem Existing works

• H. BERESTYCKI, L.A. CAFFARELLI, L. NIRENBERG. Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains. Comm. Pure Appl. Math., 1997, 1089–1111.

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

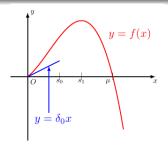
Assume $N \geq 2$, f be an Allen-Cahn type function, Ω be a globally Lipschitz epigraph and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution of (NPE). Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Presentation of the problem Existing works

• H. BERESTYCKI, L.A. CAFFARELLI, L. NIRENBERG. Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains. Comm. Pure Appl. Math., 1997, 1089–1111.

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

Assume $N \ge 2$, f be an Allen-Cahn type function, Ω be a globally Lipschitz epigraph and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution of (NPE). Then u is monotone, i.e., $\frac{\partial u}{\partial x_u} > 0$ in Ω .



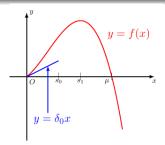
Presentation of the problem Existing works

• H. BERESTYCKI, L.A. CAFFARELLI, L. NIRENBERG. Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains. Comm. Pure Appl. Math., 1997, 1089–1111.

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

Assume $N \ge 2$, f be an Allen-Cahn type function, Ω be a globally Lipschitz epigraph and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution of (NPE).

Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .



Example :

$$f(x)=x-x^3.$$

Presentation of the problem Existing works

• FARINA Some results about semilinear elliptic problems on *half-spaces*. Mathematics in Engineering., 2020, 709-721.

Theorem (A. Farina (2020))

Assume $N \ge 2$, $f \in Lip_{loc}([0, +\infty))$ such that $f(0) \ge 0$ and $u \in C^2(\mathbb{R}^N_+) \cap C^0(\overline{\mathbb{R}^N_+})$ be a solution of (NPE). Suppose that

 $\forall t > 0 \quad \exists C(t) > 0, \quad 0 \le u \le C(t) \text{ in } \mathbb{R}^{N-1} \times [0, t].$

Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in \mathbb{R}^N_+ .

Introduction

- Presentation of the problem
- Existing works

2 Monotonicity results in an epigraph

- Results and comments
- The moving plane method
- Extensions to merely continuous epigraphs

3 Liouville-type result

Monotonicity results

Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a uniformly continuous epigraph bounded from below, $f \in Lip([0, +\infty))$ with f(0) > 0 and let $u \in H^1_{loc}(\overline{\Omega}) \cap UC(\overline{\Omega})$ be distributionnal solution of (NPE) Then u is monotone, i.e., $\frac{\partial u}{\partial x_{M}} > 0$ in Ω .

Results and comments The moving plane method Extensions to merely continuous epigraphs

Monotonicity results

Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a uniformly continuous epigraph bounded from below, $f \in Lip([0, +\infty))$ with f(0) > 0 and let $u \in H^1_{loc}(\overline{\Omega}) \cap UC(\overline{\Omega})$ be distributionnal solution of (NPE) Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

- $H^1_{\mathsf{loc}}(\overline{\Omega}) := \{ u : \Omega \mapsto \mathbb{R}, \ u \text{ mesurable} : u \in H^1(\Omega \cap B(0, R)) \quad \forall R > 0 \}$
- UC(S) the set of uniformly continuous functions defined on S.

Results and comments The moving plane method Extensions to merely continuous epigraphs

Monotonicity results

Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a uniformly continuous epigraph bounded from below, $f \in Lip([0, +\infty))$ with f(0) > 0 and let $u \in H^1_{loc}(\overline{\Omega}) \cap UC(\overline{\Omega})$ be distributionnal solution of (NPE) Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

- $H^1_{\mathsf{loc}}(\overline{\Omega}) := \{ u : \Omega \mapsto \mathbb{R}, \ u \text{ mesurable} : u \in H^1(\Omega \cap B(0, R)) \quad \forall R > 0 \}$
- UC(S) the set of uniformly continuous functions defined on S.
- Weierstrass type functions :

$$g_{b,lpha}(x) = \sum_{n=1}^{\infty} b^{-nlpha} \cos(b^n \pi x), ext{ where } b > 1 ext{ is an integer and } lpha \in (0,1).$$

The function $g_{b,\alpha}$ is uniformly continuous, bounded and nowhere differentiable.

Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a globally Lipschitz continuous epigraph bounded from below.

Assume $f \in Lip([0, +\infty))$ with $f(0) \ge 0$ and let $u \in C^0(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ be a distributional solution to (NPE) such that for any R > 0, there are positive numbers A = A(R), B = B(R) such that

$$u(x) \leq Ae^{B|x|} \qquad \forall x \in \Omega \cap \{x_N < R\}.$$

Then u is strictly increasing in the x_N -direction, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Comments

1- If $f \in Lip_{loc}([0, +\infty))$ and u is bounded on finite strips, that is, for any R > 0,

 $\exists C(R) > 0, \ u(x) \leq C(R) \quad \forall x \in \Omega \cap \{0 < x_N < R\}.$

then the theorem holds true.

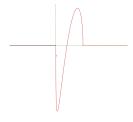
Comments

1- If $f \in Lip_{loc}([0, +\infty))$ and u is bounded on finite strips, that is, for any R > 0,

 $\exists C(R) > 0, \ u(x) \leq C(R) \quad \forall x \in \Omega \cap \{0 < x_N < R\}.$

then the theorem holds true.

2- If f is not locally Lipschitz continuous then the previous theorem does not hold.



 $f \alpha$ -hölder (0 < α < 1)

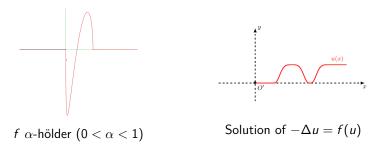
Comments

1- If $f \in Lip_{loc}([0, +\infty))$ and u is bounded on finite strips, that is, for any R > 0,

 $\exists C(R) > 0, \ u(x) \leq C(R) \quad \forall x \in \Omega \cap \{0 < x_N < R\}.$

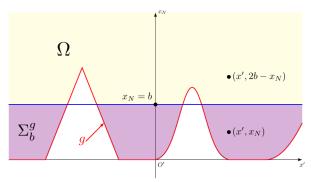
then the theorem holds true.

2- If f is not locally Lipschitz continuous then the previous theorem does not hold.



Notations

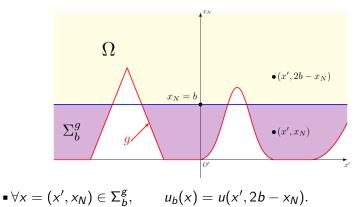
•
$$\Sigma_b^g = \{x = (x', x_N) \in \mathbb{R}^N : g(x') < x_N < b\},\$$



Introduction Results and comments Monotonicity results in an epigraph Liouville-type result

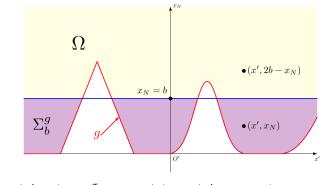
Notations

•
$$\Sigma_b^g = \{x = (x', x_N) \in \mathbb{R}^N : g(x') < x_N < b\},\$$



Notations

•
$$\Sigma_b^g = \{x = (x', x_N) \in \mathbb{R}^N : g(x') < x_N < b\},\$$



• $\forall x = (x', x_N) \in \Sigma_b^g, \qquad u_b(x) = u(x', 2b - x_N).$

Aim : Prove that

$$\Lambda := \{t > 0 : u \leqslant u_\theta \text{ in } \Sigma^g_\theta, \forall 0 < \theta < t\} = \mathbb{R}^+_*.$$

$$\frac{\partial u}{\partial x_N}(x',b) = \lim_{h \to 0} \frac{u(x',b+h) - u(x',b)}{h},$$

$$\Lambda = \mathbb{R}^+_*$$

$$\frac{\partial u}{\partial x_{N}}(x',b) = \lim_{h \to 0} \frac{u(x',b+h) - u(x',b)}{h},$$

$$\Omega$$

$$(x',b+h)$$

$$(x',b+h)$$

$$\Sigma_{b+\frac{h}{2}}^{g}$$

$$(x',b)$$

$$u(x) \leq u_{b+rac{h}{2}}(x) \quad ext{for all } x \in \Sigma^g_{b+rac{h}{2}}.$$

$$\Lambda = \mathbb{R}^+_*$$

$$\frac{\partial u}{\partial x_{N}}(x',b) = \lim_{h \to 0} \frac{u(x',b+h) - u(x',b)}{h},$$

$$\Omega$$

$$(x',b+h)$$

$$\Sigma_{b+\frac{h}{2}}^{g}$$

$$(x',b+h)$$

$$(x',b)$$

$$u(x) \leq u_{b+rac{h}{2}}(x) \quad ext{for all } x \in \Sigma^g_{b+rac{h}{2}}.$$

In particular, as $(x',b)\in \Sigma^g_b$, we get $u(x',b)\leq u(x',b+h)$.

$\Lambda \neq \emptyset$

Definition (Open sets with good section)

An open set $\Omega \subset \mathbb{R}^N$ has a good section in direction e_N if it satisfies the following conditions :

1- For any R > 0; we have

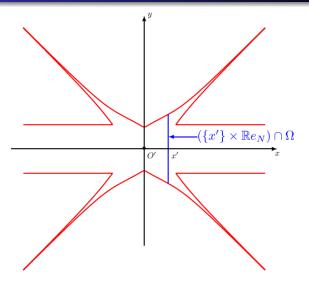
$$C_{e_N}(R) = (B'(0',R) imes \mathbb{R} e_N) \cap \Omega$$
 is a bounded subset of \mathbb{R}^N .

2-

$$\sup_{x'\in\mathbb{R}^{N-1}}(S^{e_N}_{x'}):=\sup_{x'\in\mathbb{R}^{N-1}}(\mathcal{L}^1((\{x'\}\times\mathbb{R}e_N)\cap\Omega))<+\infty$$

Introduction Results and comments Monotonicity results in an epigraph Liouville-type result

$\Lambda \neq \emptyset$



$\Lambda \neq \emptyset$

Theorem (B., Farina, Sciunzi (2025))

Assume $\delta, \gamma \geq 0$, $N \geq 2$ and let Ω be an open subset of \mathbb{R}^N with good section in the direction e_N , such that

$$\sup_{\substack{'\in\mathbb{R}^{N-1}}}\left(\int_{\mathcal{S}_{x'}^{e_{N}}}|x_{N}|^{2\delta}e^{2\gamma|x_{N}|}dx_{N}\right)<+\infty.$$
 (1)

Let $f \in Lip(\mathbb{R})$, a > 0 and $u, v \in H^1_{loc}(\overline{\Omega}) \cap C^0(\overline{\Omega})$ such that

$$\begin{cases} -\Delta u - f(u) \leq -\Delta v - f(v) & \text{in } \mathcal{D}'(\Omega), \\ |u|, |v| \leq a|x|^{\delta} e^{\gamma|x|} & \text{in } \Omega, \\ u \leq v & \text{on } \partial\Omega. \end{cases}$$

Then, there exists $\varepsilon = \varepsilon(L_f, \gamma) > 0$ such that

$$\mathbf{S}_{e_N}(\Omega) < \varepsilon \implies u \leq v \text{ in } \Omega.$$

 $\Lambda \neq \emptyset$

Let b < 1 and apply previous theorem with $\Omega = \Sigma_b^g$, $v = u_b$.

Introduction Results and comments Monotonicity results in an epigraph Liouville-type result Liouville-type result Extensions to merely continuous epigraphs

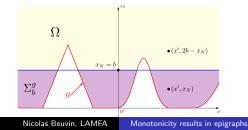
 $\Lambda \neq \emptyset$

Let b < 1 and apply previous theorem with $\Omega = \Sigma_b^g$, $v = u_b$. Then

$$\sup_{x'\in\mathbb{R}^{N-1}} \Big(\int_{S_{x'}^{e_N}} |x_N|^{2\delta} e^{2\gamma|x_N|} dx_N\Big) < e^{2\gamma b} b^{2\delta+1}, \text{ for any } \gamma, \delta \ge 0.$$

and

$$\begin{cases} -\Delta u - f(u) = 0 = -\Delta u_b - f(u_b) & \text{in } \mathcal{D}'(\Sigma_g^b), \\ |u|, |u_b| \le a|x| & \text{in } \Sigma_g^b, \\ u \le u_b & \text{on } \partial \Sigma_g^b. \end{cases}$$

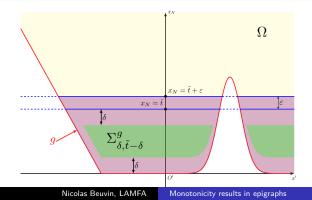


$\tilde{t} := \sup \overline{\Lambda} = +\infty$

Proposition $(ilde{t} < +\infty)$

For every $\delta \in (0, \frac{\tilde{t}}{2})$ there is $\varepsilon(\delta) > 0$ such that

$$\forall \varepsilon \in (0, \varepsilon(\delta)) \qquad u \leq u_{\tilde{t}+\varepsilon} \quad in \quad \overline{\Sigma^{g}_{\delta, \tilde{t}-\delta}}.$$



Proof of Proposition

If the claim were not true, there would exist $\delta \in (0, \frac{t}{2})$ such that

$$\forall k \geq 1 \quad \exists \varepsilon_k \in \left(0, \frac{1}{k}\right), \exists x^k \in \overline{\Sigma^g_{\delta, \tilde{t} - \delta}} \quad : \quad u(x^k) > u_{\tilde{t} + \epsilon_k}(x^k),$$

and so

$$0 \leq g((x^k)') < g((x^k)') + \delta \leq x_N^k \leq \tilde{t} - \delta.$$

thus $x_N^k \to x_\infty$.

Proof of Proposition

If the claim were not true, there would exist $\delta \in (0, \frac{t}{2})$ such that

$$\forall k \geq 1 \quad \exists \varepsilon_k \in \left(0, \frac{1}{k}\right), \exists x^k \in \overline{\Sigma^g_{\delta, \tilde{t} - \delta}} \quad : \quad u(x^k) > u_{\tilde{t} + \epsilon_k}(x^k),$$

and so

$$0 \leq g((x^k)') < g((x^k)') + \delta \leq x_N^k \leq \tilde{t} - \delta.$$

thus $x_N^k
ightarrow x_\infty.$ Let $g_k(x') = g((x^k)' + x')$,

Proof of Proposition

If the claim were not true, there would exist $\delta \in (0, \frac{\tilde{t}}{2})$ such that

$$\forall k \geq 1 \quad \exists \varepsilon_k \in \left(0, \frac{1}{k}\right), \exists x^k \in \overline{\Sigma^{g}_{\delta, \tilde{t} - \delta}} \quad : \quad u(x^k) > u_{\tilde{t} + \epsilon_k}(x^k),$$

and so

$$0 \leq g((x^k)') < g((x^k)') + \delta \leq x_N^k \leq \tilde{t} - \delta.$$

thus $x_N^k o x_\infty$.Let $g_k(x') = g((x^k)' + x')$, we have

 $\left\{\begin{array}{l} (g_k)_{k\in\mathbb{N}} \text{ is uniformly equicontinuous on } \mathbb{R}^{N-1}, \text{ since } g\in UC(\mathbb{R}^{N-1}), \\ 0\leq g_k(0')<\tilde{t}. \end{array}\right.$

Proof of Proposition

If the claim were not true, there would exist $\delta \in (0, rac{ ilde{t}}{2})$ such that

$$\forall k \geq 1 \quad \exists \varepsilon_k \in \left(0, \frac{1}{k}\right), \exists x^k \in \overline{\Sigma^{g}_{\delta, \tilde{t} - \delta}} \quad : \quad u(x^k) > u_{\tilde{t} + \epsilon_k}(x^k),$$

and so

$$0 \leq g((x^k)') < g((x^k)') + \delta \leq x_N^k \leq \tilde{t} - \delta.$$

thus $x_N^k
ightarrow x_\infty.$ Let $g_k(x') = g((x^k)' + x')$, we have

 $\left\{\begin{array}{l} (g_k)_{k\in\mathbb{N}} \text{ is uniformly equicontinuous on } \mathbb{R}^{N-1}, \text{ since } g\in UC(\mathbb{R}^{N-1}),\\ 0\leq g_k(0')<\tilde{t}.\end{array}\right.$

By Ascoli-Arzelà theorem, there exists $g_\infty \in UC(\mathbb{R}^{N-1})$ such that

$$g_k o g_\infty$$
 in $C^0_{\mathsf{loc}}(\mathbb{R}^{N-1})$.

Proof of proposition

We fix $\Omega^k := \{x_N > g_k(x')\}$ and $\Omega^\infty := \{x_N > g_\infty(x')\}$, and

Proof of proposition

We fix $\Omega^k := \{x_N > g_k(x')\}$ and $\Omega^\infty := \{x_N > g_\infty(x')\}$, and

$$ilde{u}(x) := \left\{ egin{array}{cc} u(x) & ext{if} & x \in \overline{\Omega}, \ 0 & ext{if} & \mathbb{R}^N ackslash \overline{\Omega}. \end{array}
ight.$$

Proof of proposition

We fix
$$\Omega^k := \{x_N > g_k(x')\}$$
 and $\Omega^\infty := \{x_N > g_\infty(x')\}$, and

$$ilde{u}(x) := \left\{ egin{array}{cc} u(x) & ext{if} & x \in \overline{\Omega}, \\ 0 & ext{if} & \mathbb{R}^N ackslash \overline{\Omega}. \end{array}
ight.$$

Then $\tilde{u} \in UC(\mathbb{R}^N)$ (since $u \in UC(\Omega)$) and the sequence $\tilde{u}_k(x) := u((x^k)' + x', x_N)$ satisfies

$$\left\{\begin{array}{l} (\tilde{u}_k)_{k\in\mathbb{N}} \text{ is uniformly equicontinuous on } \mathbb{R}^N,\\ \tilde{u}_k(0',-1)=0\,(\text{ since }(0',-1)\in\{x_N<0\}). \end{array}\right.$$

Proof of proposition

We fix
$$\Omega^k := \{x_N > g_k(x')\}$$
 and $\Omega^\infty := \{x_N > g_\infty(x')\}$, and

$$ilde{u}(x) := \left\{ egin{array}{cc} u(x) & ext{if} & x \in \overline{\Omega}, \\ 0 & ext{if} & \mathbb{R}^N ackslash \overline{\Omega}. \end{array}
ight.$$

Then $\tilde{u} \in UC(\mathbb{R}^N)$ (since $u \in UC(\Omega)$) and the sequence $\tilde{u}_k(x) := u((x^k)' + x', x_N)$ satisfies

$$\left\{ \begin{array}{l} (\tilde{u}_k)_{k\in\mathbb{N}} \text{ is uniformly equicontinuous on } \mathbb{R}^N, \\ \tilde{u}_k(0',-1)=0 \, (\text{ since } (0',-1)\in\{x_N<0\}). \end{array} \right.$$

By Ascoli-Arzelà theorem, there exists $\tilde{u}_{\infty} \in C^0(\mathbb{R}^N)$ such that

$$\tilde{u}_k \to \tilde{u}_\infty$$
 in $C^0_{\text{loc}}(\mathbb{R}^N)$.

Proof of proposition

Now, let $u_\infty:= ilde{u}_{\infty_{\mid \Omega^\infty}}.$ Then u_∞ satisfies the following

$$\left\{\begin{array}{ll} u_{\infty}\in C^{2}(\Omega^{\infty})\cap C^{0}(\overline{\Omega^{\infty}})\\ -\Delta u_{\infty}=f(u_{\infty}) & \text{ in } \quad \Omega^{\infty},\\ u_{\infty}\geq 0 & \text{ in } \quad \Omega^{\infty},\\ u_{\infty}=0 & \text{ on } \quad \partial\Omega^{\infty},\\ u_{\infty}(0',x_{\infty})=u_{\infty,\tilde{t}}(0',x_{\infty})\end{array}\right.$$

The last inequality is due to

Proof of proposition

Now, let $u_\infty:= ilde{u}_{\infty_{\mid\Omega^\infty}}.$ Then u_∞ satisfies the following

$$\left\{\begin{array}{ll} u_{\infty}\in C^{2}(\Omega^{\infty})\cap C^{0}(\overline{\Omega^{\infty}})\\ -\Delta u_{\infty}=f(u_{\infty}) & \text{ in } \quad \Omega^{\infty},\\ u_{\infty}\geq 0 & \text{ in } \quad \Omega^{\infty},\\ u_{\infty}=0 & \text{ on } \quad \partial\Omega^{\infty},\\ u_{\infty}(0',x_{\infty})=u_{\infty,\tilde{t}}(0',x_{\infty})\end{array}\right.$$

The last inequality is due to • $u \leq u_{\tilde{t}}$ in $\Sigma_{\tilde{t}}^{g}$, hence $\tilde{u}_{k} \leq \tilde{u}_{k,\tilde{t}}$ in $\Sigma_{\tilde{t}}^{g_{k}}$. Thus $u_{\infty} \leq u_{\infty,\tilde{t}}$ in $\Sigma_{\tilde{t}}^{g_{\infty}}$ and $(0', x_{\infty}) \in \Sigma_{\tilde{t}}^{g_{\infty}}$.

Proof of proposition

Now, let $u_\infty:= ilde{u}_{\infty_{\mid\Omega^\infty}}.$ Then u_∞ satisfies the following

$$\left\{\begin{array}{ll} u_{\infty}\in C^{2}(\Omega^{\infty})\cap C^{0}(\overline{\Omega^{\infty}})\\ -\Delta u_{\infty}=f(u_{\infty}) & \text{in } \Omega^{\infty},\\ u_{\infty}\geq 0 & \text{in } \Omega^{\infty},\\ u_{\infty}=0 & \text{on } \partial\Omega^{\infty},\\ u_{\infty}(0',x_{\infty})=u_{\infty,\tilde{t}}(0',x_{\infty})\end{array}\right.$$

The last inequality is due to • $u \leq u_{\tilde{t}}$ in $\Sigma_{\tilde{t}}^{g}$, hence $\tilde{u}_{k} \leq \tilde{u}_{k,\tilde{t}}$ in $\Sigma_{\tilde{t}}^{g_{k}}$. Thus $u_{\infty} \leq u_{\infty,\tilde{t}}$ in $\Sigma_{\tilde{t}}^{g_{\infty}}$ and $(0', x_{\infty}) \in \Sigma_{\tilde{t}}^{g_{\infty}}$. • $\tilde{u}_{k}(0', x_{N}^{k}) = u(x^{k}) > u_{\tilde{t}+\varepsilon_{k}}(x^{k}) = \tilde{u}_{k,\tilde{t}+\varepsilon_{k}}(0', x_{N}^{k})$ so, taking the limit as $k \to +\infty$, we have

$$u_{\infty}(0', x_N^{\infty}) \geq u_{\infty,\tilde{t}}(0', x_N^{\infty}).$$

Proof of proposition

By the maximum principle, either

$$u_{\infty}\equiv 0$$
 in $\Omega^{\infty},$ hence $f(0)=0\Rightarrow \Leftarrow$

Proof of proposition

By the maximum principle, either

```
u_{\infty} \equiv 0 in \Omega^{\infty}, hence f(0) = 0 \Rightarrow \Leftarrow
```

or $u_{\infty} > 0$ in Ω^{∞} .

Proof of proposition

By the maximum principle, either

$$u_\infty\equiv 0$$
 in $\Omega^\infty,$ hence $f(0)=0\Rightarrow \Leftarrow$

or $u_\infty>0$ in $\Omega^\infty.$ In this case, $w=u_{\infty,{\widetilde t}}-u_\infty$ satisfies

$$\left\{ \begin{array}{ll} -\Delta w \geq -L_f w \quad \text{in} \quad X, \\ w \geq 0 \quad \text{in} \quad X, \\ w(0', x_\infty) = 0. \end{array} \right.$$

where $X \subset \Sigma_{\tilde{t}}^{g_{\infty}}$ is the connected component of $\Sigma_{\tilde{t}}^{g_{\infty}}$ containing $(0', x_{\infty})$.

Proof of proposition

By the maximum principle, either

$$u_\infty\equiv 0$$
 in $\Omega^\infty,$ hence $f(0)=0\Rightarrow \Leftarrow$

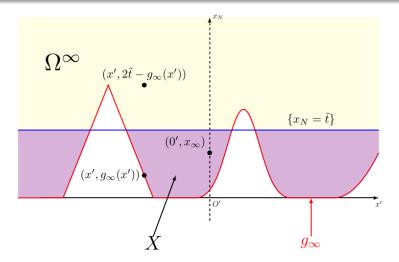
or $u_\infty>0$ in $\Omega^\infty.$ In this case, $w=u_{\infty,\widetilde{t}}-u_\infty$ satisfies

$$\left\{ \begin{array}{ll} -\Delta w \geq -L_f w \quad \text{in} \quad X, \\ w \geq 0 \quad \text{in} \quad X, \\ w(0', x_\infty) = 0. \end{array} \right.$$

where $X \subset \Sigma_{\tilde{t}}^{g_{\infty}}$ is the connected component of $\Sigma_{\tilde{t}}^{g_{\infty}}$ containing $(0', x_{\infty})$. Therefore

$$w \equiv 0$$
 in X, i.e. $u_{\infty} \equiv u_{\infty,\tilde{t}}$ in X.

Proof of proposition



$$(0, \varepsilon) \in \Lambda,$$

Summary

$$\begin{cases} (0,\varepsilon) \in \Lambda, \\ \tilde{t} := \sup \Lambda = +\infty, \end{cases}$$

Summary

$$\left\{\begin{array}{ll} (0,\varepsilon)\in\Lambda,\\ \tilde{t}:=\sup\Lambda=+\infty,\end{array}\Rightarrow\Lambda=\mathbb{R}^+_*\Rightarrow\frac{\partial u}{\partial x_{\mathcal{N}}}(x)\geq0\text{ for }x\in\Omega.\end{array}\right.$$

Summary

$$\left\{\begin{array}{ll} (0,\varepsilon)\in\Lambda,\\ \tilde{t}:=\sup\Lambda=+\infty,\end{array}\Rightarrow\Lambda=\mathbb{R}^+_*\Rightarrow\frac{\partial u}{\partial x_{\mathcal{N}}}(x)\geq0\text{ for }x\in\Omega.\end{array}\right.$$

Now, we will prove that

$$rac{\partial u}{\partial x_N}(x) > 0$$
 for any $x \in \Omega$.

Hopf's Lemma

Theorem (Hopf's lemma)

Let X a smooth domain, $x_0 \in \partial X$ and let ν be the exterior unit normal to X at x_0 . Let $w \in C^2(X) \cap C^1(X \cap \{x_0\})$ such that

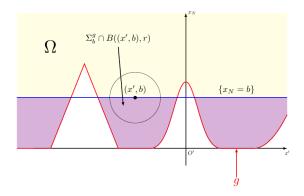
$$\left\{ \begin{array}{ll} -\Delta w + cw \geq 0 & \text{in } X, \\ w > 0 & \text{in } X, \\ w(x_0) = 0. \end{array} \right.$$

Then

$$\frac{\partial w}{\partial \nu}(x_0) < 0.$$

Hopf's Lemma

Let $(x',b)\in \Omega$ and let r>0 such that $B((x',b),r)\subset \Omega$



Hopf's Lemma

Applying the Hopf's lemma with $X = \Sigma_b^g \cap B((x', b), r)$, $x_0 = (x', b)$, $\nu = e_N$ and $w = u_b - u$ which satisfies

w > 0 in X, (since $\Lambda = \mathbb{R}^+_*$ and by the maximum principle.)

and

$$-\Delta w = -\Delta u_b + \Delta u = f(u_b) - f(u) \ge -L_f w$$
 in Σ_b^g .

Hopf's Lemma

Applying the Hopf's lemma with $X = \Sigma_b^g \cap B((x', b), r)$, $x_0 = (x', b)$, $\nu = e_N$ and $w = u_b - u$ which satisfies

w > 0 in X, (since $\Lambda = \mathbb{R}^+_*$ and by the maximum principle.)

and

$$-\Delta w = -\Delta u_b + \Delta u = f(u_b) - f(u) \ge -L_f w$$
 in Σ_b^g .

As w(x', b) = 0, we have

$$0 > \frac{\partial w}{\partial x_N}(x',b) = -2\frac{\partial u}{\partial x_N}(x',b).$$

Hopf's Lemma

Applying the Hopf's lemma with $X = \Sigma_b^g \cap B((x', b), r)$, $x_0 = (x', b)$, $\nu = e_N$ and $w = u_b - u$ which satisfies

w > 0 in X, (since $\Lambda = \mathbb{R}^+_*$ and by the maximum principle.)

and

$$-\Delta w = -\Delta u_b + \Delta u = f(u_b) - f(u) \ge -L_f w$$
 in Σ_b^g .

As w(x', b) = 0, we have

$$0 > \frac{\partial w}{\partial x_N}(x',b) = -2\frac{\partial u}{\partial x_N}(x',b).$$

Therefore

$$\frac{\partial u}{\partial x_N}(x',b)>0.$$

Definition of class \mathcal{G}

Definition (Class \mathcal{G})

Assume $N \ge 2$. We say that a continuous function $g : \mathbb{R}^{N-1} \mapsto \mathbb{R}$ belongs to the class \mathcal{G} , if it satisfies the following compactness property

(\mathcal{P}) Any sequence (g_k) of translations of g, which is bounded at some fixed point of \mathbb{R}^{N-1} , admits a subsequence converging uniformly on every compact sets of \mathbb{R}^{N-1} .

Example :

- Uniformly continuous functions on \mathbb{R}^{N-1} .
- Coercive continuous functions on \mathbb{R}^{N-1} .
- Functions g : ℝ^{N-1} → ℝ such that there exists a continuous bijection Φ : ℝ → ℝ such that Φ ∘ g ∈ G. As

$$x \rightarrow e^{x}$$
.

Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a uniformly continuous epigraph bounded from below, $f \in Lip([0, +\infty))$ with f(0) > 0 and let $u \in H^1_{loc}(\overline{\Omega}) \cap UC(\overline{\Omega})$ be distributionnal solution of (NPE) Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Theorem (B., Farina, Sciunzi, 2025)

Let $N \ge 2$ and let Ω be an epigraph bounded from below and defined by a function $g \in \mathcal{G}$. Assume $f \in Lip([0, +\infty))$ with f(0) > 0. If $u \in UC(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ is a distributional solution to (NPE). Then u is strictly increasing in the x_N -direction, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a globally Lipschitz continuous epigraph bounded from below. Assume $f \in Lip([0, +\infty))$ with $f(0) \ge 0$ and let $u \in C^0(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ be a distributional solution to (NPE) with at most exponential growth on finite strips. Then u is strictly increasing in the x_N -direction, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Theorem (B., Farina, Sciunzi, 2025)

Let $N \geq 2$ and let Ω be an epigraph defined by a function $g \in \mathcal{G}$. Also suppose that Ω is bounded from below and satisfies a uniform exterior cone condition. Assume $f \in Lip([0, +\infty))$ with $f(0) \geq 0$ and let $u \in C^0(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ be a distributional solution to (NPE) with at most exponential growth on finite strips. Then u is strictly increasing in the x_N -direction, i.e., $\frac{\partial u}{\partial x_M} > 0$ in Ω .

Idea of the proof

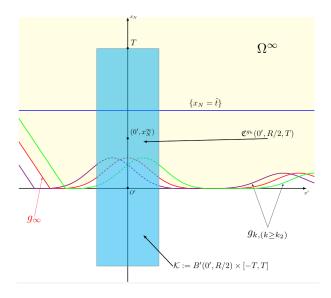
We define in Ω^k ,

$$v_k(x) = \frac{u(x' + (x^k)', x_N)}{u(x^k)} = \frac{u_k(x)}{\alpha_k}$$

it satisfies

$$\begin{cases} -\Delta v_k = \frac{f(\alpha_k v_k)}{\alpha_k} := f_k(v_k) & \text{in } \Omega^k, \\ v_k = 0 & \text{in } \partial \Omega^k, \\ v_k(0', x_N^k) = 1. \end{cases}$$

Exterior cone condition implies that $v_k \in C^{0,\alpha}(\overline{\mathfrak{C}^{g_k}(0', R/2, T)})$ and $\|v_k\|_{C^{0,\alpha}(\overline{\mathfrak{C}^{g_k}(0', R/2, T)}) \leq C$ (11 pages)



Introduction Monotonicity results in an epigraph Liouville-type result Results and comments The moving plane method Extensions to merely continuous epigraphs

We fix $\mathcal{K} := B'(0', R/2) \times [-T, T]$ and

$$ilde{v}_k(x) = \left\{ egin{array}{cc} v_k(x) & ext{if} \quad x \in \overline{\mathfrak{C}^{g_k}(0', R/2, T)}, \ 0 & ext{if} \quad x \in \mathcal{K} igwedge{\mathfrak{C}^{g_k}(0', R/2, T)}. \end{array}
ight.$$

By Ascoli-Arzela, there exist $v_{\infty} \in C^{0,\alpha}(\mathcal{K})$ such that $\tilde{v}_k \to v_{\infty}$ in $C^0(\mathcal{K})$ and it solves.

$$\begin{cases} -\Delta v_{\infty} = f_{\infty}(v_{\infty}) & \text{in} \quad \mathfrak{C}^{g_{\infty}}(0', R/2, T), \\ v_{\infty} \ge 0 & \text{in} \quad \mathfrak{C}^{g_{\infty}}(0', R/2, T), \\ v_{\infty} = 0 & \text{in} \quad \{x_{N} = g_{\infty}(x')\} \cap \mathcal{K}, \\ v_{\infty}(0', x^{\infty}) = 1 & \text{and} \quad v_{\infty}(0', x^{\infty}) = v_{\infty,\tilde{t}}(0', x^{\infty}) \end{cases}$$

By the maximum principle apply v_∞ , we have

$$v_{\infty} > 0$$
 in $\mathfrak{C}^{g_{\infty}}(0', R/2, T)$.

By the maximum principle apply to $v_{\infty, { ilde t}} - v_\infty$ we have

$$v_{\infty} = v_{\infty,\tilde{t}}$$
 in $\Sigma_{\tilde{t}}^{g_{\infty}} \cap \mathcal{K}$.

Introduction

- Presentation of the problem
- Existing works

2 Monotonicity results in an epigraph

- Results and comments
- The moving plane method
- Extensions to merely continuous epigraphs

3 Liouville-type result

Theorem (B., Farina, Sciunzi (2025))

Let $\Omega \subset \mathbb{R}^N$ be a globally Lipschitz continuous epigraph bounded from below, and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution to

$$\left\{ egin{array}{ccc} -\Delta u = f(u) & in & \Omega, \ u \geq 0 & in & \Omega, \ u = 0 & on & \partial\Omega. \end{array}
ight.$$

Assume that $f \in C^1([0, +\infty))$, f(t) > 0 for t > 0 and $2 \le N \le 11$, then $u \equiv 0$ and f(0) = 0.

Theorem (B., Farina, Sciunzi (2025))

Let $\Omega \subset \mathbb{R}^N$ be a globally Lipschitz continuous epigraph bounded from below, and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution to

$$\left(egin{array}{ccc} -\Delta u = f(u) & in & \Omega, \ u \geq 0 & in & \Omega, \ u = 0 & on & \partial\Omega. \end{array}
ight.$$

Assume that $f \in C^1([0, +\infty))$, f(t) > 0 for t > 0 and $2 \le N \le 11$, then $u \equiv 0$ and f(0) = 0.

Corollary

Let $2 \le N \le 11$ and $\Omega \subset \mathbb{R}^N$ be a globally Lipschitz continuous epigraph bounded from below. If $f \in C^1([0, +\infty))$, satisfies f(t) > 0 for $t \ge 0$ then problem (NPE) does not admit any classical solutions of class $C^2(\Omega) \cap C^0(\overline{\Omega})$.

By the maximum principle, either $u \equiv 0$ and f(0) = 0 and the proof is complete, or

u > 0 in Ω .

By the maximum principle, either $u \equiv 0$ and f(0) = 0 and the proof is complete, or

$$u > 0$$
 in Ω .

Hence $\frac{\partial u}{\partial x_N} > 0$ in Ω and as $0 \le u \le M := \sup_{\Omega} u$, the function

$$v(x') = \lim_{x_N o \infty} u(x', x_N)$$
 exists and solves

$$\begin{cases} v \in C^2(\mathbb{R}^{N-1}) \\ -\Delta v = f(v) & \text{in } \mathbb{R}^{N-1}, \\ 0 \le v \le M & \text{in } \mathbb{R}^{N-1}, \\ M = \sup_{\mathbb{R}^{N-1}} v. \end{cases}$$

By the maximum principle, either $u \equiv 0$ and f(0) = 0 and the proof is complete, or

$$u>0$$
 in Ω .

Hence $\frac{\partial u}{\partial x_N} > 0$ in Ω and as $0 \le u \le M := \sup_{\Omega} u$, the function

$$v(x') = \lim_{x_N o \infty} u(x', x_N)$$
 exists and solves

$$\begin{cases} v \in C^2(\mathbb{R}^{N-1}) \\ -\Delta v = f(v) & \text{in } \mathbb{R}^{N-1}, \\ 0 \le v \le M & \text{in } \mathbb{R}^{N-1}, \\ M = \sup_{\mathbb{R}^{N-1}} v. \end{cases}$$

and v is stable, ($\int_{\mathbb{R}^{N-1}} f'(v) \phi^2 \leq \int_{\mathbb{R}^{N-1}} |\nabla \phi|^2$).

Theorem (Dupaigne, Farina, 2022)

Assume that $u \in C^2(\mathbb{R}^p)$ is bounded below and that u is a stable solution of

 $-\Delta u = f(u)$ in \mathbb{R}^p .

where $f : \mathbb{R} :\to \mathbb{R}$ is locally Lipschitz and nonnegative. If $1 \le p \le 10$, then u must be constant.

Theorem (Dupaigne, Farina, 2022)

Assume that $u \in C^2(\mathbb{R}^p)$ is bounded below and that u is a stable solution of

 $-\Delta u = f(u)$ in \mathbb{R}^p .

where $f : \mathbb{R} :\to \mathbb{R}$ is locally Lipschitz and nonnegative. If $1 \le p \le 10$, then u must be constant.

Therefore, v = M > 0 and $f(M) = 0 \Rightarrow \Leftarrow$.

Theorem (Dupaigne, Farina, 2022)

Assume that $u \in C^2(\mathbb{R}^p)$ is bounded below and that u is a stable solution of

 $-\Delta u = f(u)$ in \mathbb{R}^p .

where $f : \mathbb{R} :\to \mathbb{R}$ is locally Lipschitz and nonnegative. If $1 \le p \le 10$, then u must be constant.

Therefore, v = M > 0 and $f(M) = 0 \Rightarrow \Leftarrow$. <u>Remarks</u>: This theorem is sharp. Indeed if $p \ge 11$, for $f(u) = u^k$, *k* sufficiently large, there exists nontrivial positive bounded stable solution to the equation. (see [5]). Introduction Monotonicity results in an epigraph Liouville-type result

- N. BEUVIN, A. FARINA, B. SCIUNZI. *Monotonicity for solutions to semilinear problems in epigraphs.* arXiv :2502.04805v1, 7 Feb 2025.
- H. BERESTYCKI, L.A. CAFFARELLI, L. NIRENBERG. Monotonicity for elliptic equations in an unbounded Lipschitz domain. Comm. Pure Appl. Math. 50, 1089-1111 (1997).
- H. BERESTYCKI, L.A. CAFFARELLI, L. NIRENBERG. Further qualitative properties for elliptic equations in unbouded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15, 1997, 69-94.
- A. FARINA. Some results about semilinear elliptic problems on half-spaces. Mathematics in Engineering (2020), Volume 2, Issue 4 : 709-721
 - A. FARINA. On the classification of solutions of the Lane-Emden equation on unbounded domains on \mathbb{R}^N . J. Math. Pures Appl. 87 (2007), 537-561.

- B. GIDAS, W-M. NI, L. NIRENBERG. *Symmetry and related properties via the maximum principle.* Commun. Math. Phys. 68, 209-243 (1979).
- J. SERRIN, H. ZOU. Symmetry of ground states of quasilinear elliptic equations. Arch. Ration. Mech. Anal., 148, 265-290, (1999).