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Nonlinear Poisson equation :


−∆u = f (u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(NPE)

where
u ∈ H1

loc(Ω) ∩ C0(Ω) is a distributionnal solution.

f : [0, +∞) → R is a locally (or globally) Lipschitz continuous
function, with

f (0) ≥ 0.

Ω ⊂ RN is an epigraph bounded from below, i.e
Ω := {x = (x ′, xN) ∈ RN , xN > g(x ′)},

where g : RN−1 → R is a globally Lipschitz continuous
function and bounded from below.
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Nonlinear Poisson equation :

Aim : Prove the monotonicity of the solution of (NPE) (that
is ∂u

∂xN
> 0 in Ω).

Why :
Qualitatives properties (as one-dimensional symmetry),
Liouville-type theorems.
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Monotonicity results in an epigraph

Theorem (B., Farina, Sciunzi, 2025)
Let Ω be a globally Lipschitz continuous epigraph bounded from
below.
Assume f ∈ Lip([0, +∞)) with f (0) ≥ 0 and let
u ∈ C0(Ω) ∩ H1

loc(Ω) be a distributional solution to (NPE) such
that for any R > 0, there are positive numbers
A = A(R), B = B(R) such that

u(x) ≤ AeB|x | ∀ x ∈ Ω ∩ {xN < R} .

Then u is strictly increasing in the xN -direction, i.e., ∂u
∂xN

> 0 in Ω.
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Comments
1- If f ∈ Liploc([0, +∞)) and u is bounded on finite strips, that is,
for any R > 0,

∃C(R) > 0 , u(x) ≤ C(R) ∀x ∈ Ω ∩ {0 < xN < R}.

then the theorem holds true.

2- If f is not locally Lipschitz continuous then the previous
theorem does not hold.

f α-hölder (0 < α < 1) Solution of −∆u = f (u)
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Serrin’s overdetermined problem :


−∆u = f (u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

∂u
∂η = (∇u, η) = c on ∂Ω.

(SOP)

where
u ∈ C2(Ω) ∩ C1(Ω) is a classical solution.

Ω ⊂ RN is an epigraph bounded from below, i.e
Ω := {x = (x ′, xN) ∈ RN , xN > g(x ′)},

where g : RN−1 → R is a differentiable function and bounded
from below.
η the outward unit normal at ∂Ω.

Aim : Show one dimensionnal symmetry results that is solutions to
SOP depend on only one variable.

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 10 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

Serrin’s overdetermined problem :


−∆u = f (u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

∂u
∂η = (∇u, η) = c on ∂Ω.

(SOP)

where
u ∈ C2(Ω) ∩ C1(Ω) is a classical solution.
Ω ⊂ RN is an epigraph bounded from below, i.e

Ω := {x = (x ′, xN) ∈ RN , xN > g(x ′)},

where g : RN−1 → R is a differentiable function and bounded
from below.

η the outward unit normal at ∂Ω.
Aim : Show one dimensionnal symmetry results that is solutions to
SOP depend on only one variable.

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 10 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

Serrin’s overdetermined problem :


−∆u = f (u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

∂u
∂η = (∇u, η) = c on ∂Ω.

(SOP)

where
u ∈ C2(Ω) ∩ C1(Ω) is a classical solution.
Ω ⊂ RN is an epigraph bounded from below, i.e

Ω := {x = (x ′, xN) ∈ RN , xN > g(x ′)},

where g : RN−1 → R is a differentiable function and bounded
from below.
η the outward unit normal at ∂Ω.

Aim : Show one dimensionnal symmetry results that is solutions to
SOP depend on only one variable.

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 10 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

Serrin’s overdetermined problem :


−∆u = f (u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

∂u
∂η = (∇u, η) = c on ∂Ω.

(SOP)

where
u ∈ C2(Ω) ∩ C1(Ω) is a classical solution.
Ω ⊂ RN is an epigraph bounded from below, i.e

Ω := {x = (x ′, xN) ∈ RN , xN > g(x ′)},

where g : RN−1 → R is a differentiable function and bounded
from below.
η the outward unit normal at ∂Ω.

Aim : Show one dimensionnal symmetry results that is solutions to
SOP depend on only one variable.

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 10 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

1 Recall
Presentation of the problem
Monotonicity results in an epigraph

2 Serrin’s overdetermined problem in epigraph
Presentation of the problem
Some classic results
Flattening and symmetry results

3 Serrin’s overdetermined problem if f (0) < 0
Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 11 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

On a bounded domain

Theorem (Serrin, 1971)
Let Ω be a bounded domain whose boundary is of class C2. If
there exists a function u ∈ C2(Ω) satisfying (SOP) then Ω must
be a ball and u is radially symmetric about its center.

Physical motivations : Suppose we have a viscous incompressible
fluid moving in a straight pipe with a given cross section Ω. The
flow velocity u depends only on (x , y) variables and solves −∆u = A in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

Then the tangential stress is the same at each point of the boundary (i.e
∂u
∂η = (∇u, η) = c on ∂Ω.) if and only if Ω is a ball.
Question : What is the situation when Ω is an unbounded domain ?
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On epigraph with Allen-Cahn type nonlinearity
Theorem (Beresticky-Caffarelli-Nirenberg, 1997)
If g ∈ C2 is a globally Lipschitz-continuous function such that

∀ τ ∈ RN−1, lim
|x′|→+∞

(g(x ′ + τ) − g(x ′)) = 0.

and problem (SOP) admits a smooth and bounded solution with f an
Allen-Cahn type function.
Then g must be constant (i.e., Ω = {x ∈ RN : xN > const.} is an upper
half-space) and u takes the form u = u(xN).

Example :

f (x) = x − x3.
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Conjecture

Conjecture (Beresticky-Caffarelli-Nirenberg, 1997)
If Ω is a smooth domain with Ωc connected and that there is a
bounded positive solution of (SOP) for some Lipschitz function f
then Ω is either a half space, or a cylinder Ω = Bk × Rn−k , where
Bk is k-dimensional Euclidean ball, or the complement of a ball or
a cylinder.

In our case, the conjecture becomes

Conjecture
If Ω is a smooth enough epigraph and that there is a bounded
positive solution of (SOP) for some Lipschitz function f then Ω is
a half space.
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Theorem (Del Pino, Pacard, Wei (2014))
Let f ∈ C1([0, +∞)) such that

f (0) = 0 = f (1), f (s) > 0 ∀s ∈ (0, 1), f ′(1) < 0.

If N ≥ 9 then there exist an epigraph Ω which is not a half space,
such that that the problem

−∆u = f (u) in Ω,
0 < u ≤ 1 in Ω,

u = 0 on ∂Ω,
∂u
∂η = (∇u, η) = c on ∂Ω.

Remark : This epigraph is not globally Lipschitz continuous.

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 15 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

Theorem (Farina, Valdinoci, 2009)
Let N = 2, 3 and f be an Allen-cahn type function.
Let Ω be an open epigraph of RN with C3 and globally Lipschitz
boundary.
Suppose that u ∈ C2(Ω) ∩ L∞(Ω) satisfies (SOP).
Then, we have that Ω = RN

+ up to isometry and that there exists
u0 : (0, +∞) → (0, +∞) in such a way that

u(x1, · · · , xN) = u0(xN) for any (x1, · · · , xN) ∈ Ω.
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Case N = 2

Theorem (B., Farina, 2025)
Let Ω ⊂ R2 be a globally Lipschitz-continuous epigraph bounded from
below and with boundary of class C3 and let u ∈ C1(Ω) ∩ C2(Ω) be a
solution to (SOP).
Assume that f (0) ≥ 0 and one of the following hypotheses holds true :

(H1) f ∈ Liploc([0, +∞)), and ∇u ∈ L∞(Ω) ;

(H2)
{

f ∈ Lip([0, +∞)), f (t) ≤ 0 in (0, +∞),
u(x) = o(|x | ln 1

2 |x |), as |x | −→ ∞.

Then, Ω = R2
+ up to a vertical translation and there exists

u0 : [0, +∞) → (0, +∞) strictly increasing such that

u(x) = u0(x2) ∀x ∈ R2
+.

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 18 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

Case N = 2

Theorem (B., Farina, 2025)
Let Ω ⊂ R2 be a globally Lipschitz-continuous epigraph bounded from
below and with boundary of class C3 and let u ∈ C1(Ω) ∩ C2(Ω) be a
solution to (SOP).
Assume that f (0) ≥ 0 and one of the following hypotheses holds true :

(H1) f ∈ Liploc([0, +∞)), and ∇u ∈ L∞(Ω) ;

(H2)
{

f ∈ Lip([0, +∞)), f (t) ≤ 0 in (0, +∞),
u(x) = o(|x | ln 1

2 |x |), as |x | −→ ∞.

Then, Ω = R2
+ up to a vertical translation and there exists

u0 : [0, +∞) → (0, +∞) strictly increasing such that

u(x) = u0(x2) ∀x ∈ R2
+.

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 18 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

Important lemma for the proof

Theorem (B., Farina, 2025)
Let Ω ⊂ RN be a domain of class C3. Let f ∈ Liploc([0, +∞)) and let
u ∈ C2(Ω) ∩ C1(Ω) be a solution to (SOP) such that∫

B(0,R)∩Ω
|∇u|2 = o(R2 ln R) as R −→ ∞. (1)

If u is monotone, i.e.,

∂u
∂xN

(x) > 0 ∀x ∈ Ω, (2)

then, Ω = RN
+ up to isometry and there exists u0 : [0, +∞) → (0, +∞)

strictly increasing such that

u(x) = u0(xN) ∀x ∈ RN
+.
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Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

Comments
There is no restriction on the sign of f (0).

Ω is not necessarily a epigraph.
The previous Lemma does holds true in any dimensions.
The previous Lemma stills true when Ω = RN

+ even if the
Neumann condition is not assumed, and in RN .
⇒ The symmetry result stays true when Ω is an half-space.
We observe that if conditions on ∇u or on u are not satisfy
then our symmetry result does not hold. Indeed If we take
u(x) = x2ex1 then u satisfies

−∆u = −u in R2
+,

u > 0 in R2
+,

u = 0 on ∂R2
+.
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Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

Case N = 3, 4

Theorem (B., Farina (2025))
Let N = 3, 4 and Ω ⊂ RN be a globally Lipschitz-continuous
epigraph bounded from below and with boundary of class C3 and
let u ∈ C1(Ω) ∩ C2(Ω) be a solution to (SOP).
Assume that f (0) ≥ 0 and

(A1)


f ∈ Lip([0, +∞)), f (t) ≤ 0 in (0, +∞),

u(x) = o(|x |
4−N

2 ln 1
2 |x |), as |x | −→ ∞.

Then, Ω = RN
+ up to a vertical translation and there exists

u0 : [0, +∞) → (0, +∞) strictly increasing such that

u(x) = u0(xN) ∀x ∈ RN
+.
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Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

We define
F (t) =

∫ t

0
f (s)ds

Theorem (B., Farina (2025))
Let N = 3 and Ω ⊂ RN a smooth enough epigraph bounded from below .
Let f ∈ C1([0, +∞)) with f (0) ≥ 0 and u a bounded solution to (SOP).
Suppose that

sup
t∈[0,supΩ u]

F (t) = F (sup
Ω

u). (3)

Then, Ω = RN
+ up to isometry and there exists u0 : [0, +∞) → [0, +∞)

strictly increasing such that

u(x) = u0(xN) ∀x ∈ Ω.

Remark :If N = 2, then theorem does hold true (without (3)) since

0 < u ≤ M ⇒ ∇u is bounded in Ω.
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Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

Comments

Assumption (3) is natural since if Ω = RN
+ then

F (sup
Ω

u) > F (t) for any t ∈ [0, sup
Ω

u)

(3) is satisfies if
1 f (t) ≥ 0, for any t ≥ 0.
2 There exists ζ > 0, such that f (t) ≥ 0 on [0, ζ] and f (t) ≤ 0

on [ζ, +∞).
3 There exists 0 < ζ1 < ζ2 such that f (t) ≥ 0 in [0, ζ1], f (t) ≤ 0

in [ζ1, ζ2] and f (t) > 0 in (ζ2, +∞).

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 23 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Presentation of the problem
Some classic results
Flattening and symmetry results

Comments

Assumption (3) is natural since if Ω = RN
+ then

F (sup
Ω

u) > F (t) for any t ∈ [0, sup
Ω

u)

(3) is satisfies if
1 f (t) ≥ 0, for any t ≥ 0.
2 There exists ζ > 0, such that f (t) ≥ 0 on [0, ζ] and f (t) ≤ 0

on [ζ, +∞).
3 There exists 0 < ζ1 < ζ2 such that f (t) ≥ 0 in [0, ζ1], f (t) ≤ 0

in [ζ1, ζ2] and f (t) > 0 in (ζ2, +∞).

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 23 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

1 Recall
Presentation of the problem
Monotonicity results in an epigraph

2 Serrin’s overdetermined problem in epigraph
Presentation of the problem
Some classic results
Flattening and symmetry results

3 Serrin’s overdetermined problem if f (0) < 0
Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 24 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

1 Recall
Presentation of the problem
Monotonicity results in an epigraph

2 Serrin’s overdetermined problem in epigraph
Presentation of the problem
Some classic results
Flattening and symmetry results

3 Serrin’s overdetermined problem if f (0) < 0
Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 25 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

Theorem (B., Farina (2025))
Let N ≥ 2 and Ω be a smooth enough epigraph bounded from
below. Let f ∈ C1(R) with f (0) < 0 and u ∈ C2(Ω) ∩ C1(Ω) be a
solution to (SOP) with c ̸= 0, such that

∃C(R) > 0, such that |∇u(x)| ≤ C(R) ∀x ∈ Ω ∩ {xN ≤ R}.

Then u is strictly increasing in the xN -direction, i.e.

∂u
∂xN

> 0 in Ω.

Remarks : •"Ω smooth enough"= g ∈ C1(RN−1) and
∇g ∈ C0,α(RN−1)
•When f (0) ≥ 0 the theorem does hold true. Indeed, if ∇u is
bounded on finite strips then u too.
•The proof is based on the moving plane method and c ̸= 0.

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 26 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

Theorem (B., Farina (2025))
Let N ≥ 2 and Ω be a smooth enough epigraph bounded from
below. Let f ∈ C1(R) with f (0) < 0 and u ∈ C2(Ω) ∩ C1(Ω) be a
solution to (SOP) with c ̸= 0, such that

∃C(R) > 0, such that |∇u(x)| ≤ C(R) ∀x ∈ Ω ∩ {xN ≤ R}.

Then u is strictly increasing in the xN -direction, i.e.

∂u
∂xN

> 0 in Ω.

Remarks : •"Ω smooth enough"= g ∈ C1(RN−1) and
∇g ∈ C0,α(RN−1)

•When f (0) ≥ 0 the theorem does hold true. Indeed, if ∇u is
bounded on finite strips then u too.
•The proof is based on the moving plane method and c ̸= 0.

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 26 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

Theorem (B., Farina (2025))
Let N ≥ 2 and Ω be a smooth enough epigraph bounded from
below. Let f ∈ C1(R) with f (0) < 0 and u ∈ C2(Ω) ∩ C1(Ω) be a
solution to (SOP) with c ̸= 0, such that

∃C(R) > 0, such that |∇u(x)| ≤ C(R) ∀x ∈ Ω ∩ {xN ≤ R}.

Then u is strictly increasing in the xN -direction, i.e.

∂u
∂xN

> 0 in Ω.

Remarks : •"Ω smooth enough"= g ∈ C1(RN−1) and
∇g ∈ C0,α(RN−1)
•When f (0) ≥ 0 the theorem does hold true. Indeed, if ∇u is
bounded on finite strips then u too.

•The proof is based on the moving plane method and c ̸= 0.

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 26 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

Theorem (B., Farina (2025))
Let N ≥ 2 and Ω be a smooth enough epigraph bounded from
below. Let f ∈ C1(R) with f (0) < 0 and u ∈ C2(Ω) ∩ C1(Ω) be a
solution to (SOP) with c ̸= 0, such that

∃C(R) > 0, such that |∇u(x)| ≤ C(R) ∀x ∈ Ω ∩ {xN ≤ R}.

Then u is strictly increasing in the xN -direction, i.e.

∂u
∂xN

> 0 in Ω.

Remarks : •"Ω smooth enough"= g ∈ C1(RN−1) and
∇g ∈ C0,α(RN−1)
•When f (0) ≥ 0 the theorem does hold true. Indeed, if ∇u is
bounded on finite strips then u too.
•The proof is based on the moving plane method and c ̸= 0.

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 26 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

1 Recall
Presentation of the problem
Monotonicity results in an epigraph

2 Serrin’s overdetermined problem in epigraph
Presentation of the problem
Some classic results
Flattening and symmetry results

3 Serrin’s overdetermined problem if f (0) < 0
Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

Nicolas Beuvin, LAMFA Consequences of the monotonicity results 27 / 39



Recall
Serrin’s overdetermined problem in epigraph
Serrin’s overdetermined problem if f (0) < 0

Monotonicity results if f (0) < 0
Symmetry results for f (0) < 0
In other dimensions
Stables solutions

Theorem (B., Farina, 2025)
Let Ω ⊂ R2 be a smooth enough epigraph bounded from below and let
u ∈ C1(Ω) ∩ C2(Ω) be a solution to (SOP).
Assume that one of the following hypotheses holds true :

(H1) f ∈ Liploc([0, +∞)), and ∇u ∈ L∞(Ω) ;

(H2)
{

f ∈ Lip([0, +∞)), f (t) ≤ 0 in (0, +∞),
u(x) = o(|x | ln 1

2 |x |), as |x | −→ ∞.

Then, Ω = R2
+ up to a vertical translation and there exists

u0 : [0, +∞) → (0, +∞) strictly increasing such that

u(x) = u0(x2) ∀x ∈ R2
+.
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Theorem (B., Farina (2025))
Let N = 3 and Ω ⊂ RN a smooth enough epigraph bounded from
below . Let f ∈ C1([0, +∞)) and u a bounded solution to (SOP).
Suppose that

sup
t∈[0,supΩ u]

F (t) = F (sup
Ω

u).

Then, Ω = RN
+ up to isometry and there exists

u0 : [0, +∞) → [0, +∞) strictly increasing such that

u(x) = u0(xN) ∀x ∈ Ω.

No assumption on the sign of f (0).
There are always assumptions about u.
Just for dimensions N = 2 or 3.
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Theorem (Work in progress)

Let u ∈ C2(R2
+) be a solution of (NPE) where

f ∈ Liploc([0, +∞)). Assume that there exists positive constants
η, K , c, σ such that

f (s) ≥ cs1+σ − K , s ≥ 0 (4)

and
sf ′(s) ≥ (1 + η)f (s) − K , s ≥ 0. (5)

Then there exists u0 : [0, +∞) → [0, +∞) such that

u(x , y) = u0(y) for any (x , y) ∈ R2
+.
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Comments

No assumption on u.

Farina and Sciunzi proved that solutions of (NPE) in R2
+ are

increasing in the xN direction, independently of the sign of
f (0) (see [7]).
f can change sign.
Theorem can be applied for the Lame-Emden nonlinearity
f (t) = tp (p > 1) or f (t) = et − 2.
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2 ≤ N ≤ 9

Theorem (Work in progress)

Let 2 ≤ N ≤ 9 and u ∈ C2(RN
+) be a solution of (NPE) such that

u is non-decreasing in the xN−direction. Assume that
f ∈ C1([0, +∞)), non-negative and

f (t) ≥ At − B, for any t > 0, (6)

for some A > 0, B ≥ 0.
Then, there exists a function u0 : [0, +∞) → [0, +∞) bounded,
non-decreasing and possibly equal to zero such that,

u(x) = u0(xN) for any x ∈ RN
+.
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Stables solutions

Definition
A solution u of −∆u = f (u) in an open set Ω ⊂ RN is stable if for
every ϕ ∈ C1

c (Ω) there holds∫
Ω

f ′(u)ϕ2 ≤
∫

Ω
|∇ϕ|2.

Proposition
If ∂u

∂xN
> 0 in Ω then u is stable in Ω.
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Theorem (Work in progress)

Let 2 ≤ N ≤ 9 and u ∈ C2(RN
+) be a stable solution of (NPE),

where f ∈ C1([0, +∞)) is a non-negative, non-decreasing and
convex function.
Then, either

- u ≡ 0 and f (0) = 0,
or,

- there exists α > 0 such that

u(x) = αxN for any x ∈ RN
+.

Remarks :
•If u(x) = x2

N then −∆u = −2 and f = −2 is non-decreasing and
convex.

•If u(x) = √xN then −∆u = 1
4u3 in RN

+. (other theory since f is
not defined at 0).
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•If u(x) = √xN then −∆u = 1

4u3 in RN
+. (other theory since f is

not defined at 0).
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Result in RN

Theorem (Work in progress)
Let 2 ≤ N ≤ 4 and u ∈ C2(RN) a stable solution of −∆u = f (u)
in RN . Assume that f ∈ Liploc(R) and : ∃ζ ∈ R such that

{
f (t) ≤ 0 on (−∞, ζ),
f (t) ≥ 0 on (ζ, +∞).

|u(x)| = o(|x |
4−N

2 ln1/2 |x |) as |x | → +∞.

Then there exists u0 : R → R such that, up to a rotation,

u(x) = u0(xN) for any x ∈ RN .
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Remarks

•No assumption on the sign of u.

•f can changes sign. Note that if f satisfies

∃ζ ∈ R such that
{

f (t) ≥ 0 on (−∞, ζ),
f (t) ≤ 0 on (ζ, +∞).

•The growth assumption is important. Indeed, If u(x) = xNex1

then −∆u = −u in RN and u is stable.
•The stability is necessary. Indeed, If u(x) = xN sin(x1) then
−∆u = u in RN but u in unstable.
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