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Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Semilinear Poisson equation :


−∆u = f (u) in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(SPE)

where
f : [0, +∞) → R is a locally or globally Lipschitz-continuous
function.

Ω ⊂ RN is an epigraph bounded from below, i.e

Ω := {x = (x ′, xN) ∈ RN , xN > g(x ′)},

where g : RN−1 → R is a continuous function and bounded
from below.
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Semilinear Poisson equation :

Highlight properties of solutions to the problem (SPE) as :
monotonicity (i.e, ∂u

∂xN
> 0),

Classification results.
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Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Motivations

f (u) = u − u3

Allen-Cahn equation :
Model of phase transition
phenomena,
De Giorgi’s conjecture
(1978) a

a. E. De Giorgi Convergence
Problems for Functionnals and
Operators. Proceeding of the Int.
Meeting on Recent Methods in
Nonlinear Analysis, 1979, 131-188.

f (u) = up

Lane-Emden equation :
Stellar structure in
Astrophysics,
A limit problem, after a
blow-up procedure near the
boundary (see
Gidas-Spruck a)

a. B. Gidas, J. Spruck. A Priori
Bounds for Positive Solutions of
Nonlinear Elliptic Equations. Commun.
in. PDE. 6, 883-901 (1981).
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1 Monotonicity results when f (0) ≥ 0.
Monotonicity results in globally Lipschitz-continuous
epigraphs.
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

2 Monotonicity results regardless the sign of f (0).

3 Classification results for non-negative solutions to (SPE).
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Existing works

Theorem (Dancer (1992))
In the half-space RN

+ = {x = (x ′, xN) ∈ RN , xN > 0}, Let
u ∈ C2(RN

+) be a bounded solution of (SPE). Assume that
f ∈ C1([0, +∞)), with f (0) > 0 or both f (0) = 0 and f ′(0) ≥ 0.
Then u is strictly increasing in the xN−direction, i.e.,

∂u
∂xN

> 0 in Ω.

Remark : The need to consider unbounded solutions is well
illustrated by following examples :

u(x) = αxN with f ≡ 0.
u(x) = ln(1 + xN) with f (t) = e−2t .
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Moving plane method and new comparison principles.
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Existing works

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Assume that u ∈ C2(RN
+) is a solution of (SPE) where f is a

globally Lipschitz-continuous function with f (0) ≥ 0. Then, the
function u satisfies

∂u
∂xN

> 0 in RN
+.

Remark : This Theorem does not applies to function as
f (t) = t − t3 (Allen-Cahn equation) or f (t) = tp (Lane-Emden
equation).
Question : Does the conclusion of previous Theorem still holds for
unbounded solutions of (SPE) in the case where f is merely locally
Lipschitz-continuous ?
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Existing works

Theorem (Farina (2020))

Assume N ≥ 2, Ω = RN
+, f ∈ Liploc([0, +∞)) with f (0) ≥ 0 and

let u ∈ C2(RN
+) be a solution to (SPE).

∀t > 0, ∃C(t) > 0 such that 0 < u ≤ C(t) in RN−1 × [0, t].

Then u is strictly increasing in the xN−direction, i.e,

∂u
∂xN

> 0 in RN
+.

Questions : What happens when the geometry of Ω is more
complex ?
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Existing works
Theorem (Berestycki, Caffarelli, Nirenberg. (1997))
Assume N ≥ 2, f be an Allen-Cahn type function, Ω be a globally
Lipschitz-continuous epigraph and u ∈ C2(Ω) ∩ C0(Ω) be a
bounded solution of (SPE).
Then u is monotone, i.e., ∂u

∂xN
> 0 in Ω.

Example :

f (u) = u − u3.
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Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Ω be a globally Lipschitz-continuous epigraph bounded from
below. Assume f ∈ Lip([0, +∞)) with f (0) ≥ 0 and let
u ∈ H1

loc(Ω) ∩ C0(Ω) be a distributional solution to (SPE) such
that ∀ R > 0 ∃ A(R), B(R) > 0, such that,

u(x) ≤ AeB|x | ∀ x ∈ Ω ∩ {xN < R} .

Then u is strictly increasing in the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

H1
loc(Ω) := {u : Ω → R, u Lebesgue-mesurable : u ∈ H1(Ω ∩ B(0, R)), ∀R > 0}.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 10 / 46



Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Our contributions
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Let Ω be a globally Lipschitz-continuous epigraph bounded from
below. Assume f ∈ Liploc([0, +∞)) with f (0) ≥ 0 and let
u ∈ C0(Ω) ∩ H1

loc(Ω) be a distributional solution to (SPE) which is
bounded on finite strips, i.e., for any R > 0,

sup
Ω∩{xN<R}

u < +∞.

Then u is strictly increasing in the xN -direction, i.e., ∂u
∂xN

> 0 in Ω.

Remark : This Theorem recovers the Theorem of A.Farina in the
case of RN

+.
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Moving plane method
Prove that

Λ := {t > 0 : u ⩽ ub in Σg
b , ∀ 0 < b < t} = R+

∗ .

•Σg
b = {x = (x ′, xN) ∈ RN : g(x ′) < xN < b},

•∀x = (x ′, xN) ∈ Σg
b , ub(x) = u(x ′, 2b − xN).
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Step 1 : Λ ̸= ∅

If Σg
b is bounded (for instance when Ω is a coercive epigraph)

then we can use maximum principles for domains with small
volumes. 1

If Σg
b is unbounded then · · ·

1. H. Berestycki, L. Nirenberg. On the method of moving planes and
the sliding method. Bol. Soc. Bras. Mat, Vol 22 No 1, 1-37
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Step 1 : Λ ̸= ∅

Theorem (Farina (2020))
Let N ≥ 2 and assume that f ∈ Lip([0, +∞)). Let
u, v ∈ C2(RN−1 × [a, b]), with at most polynomial growth at
infinity and satisfying{

−∆u − f (u) ≤ −∆v − f (v) in RN−1 × (a, b)
u ≤ v on ∂(RN−1 × (a, b)),

There exists ε = ε(f ) > 0 such that, for any (a, b) ⊂ R with
0 < b − a < ε we have

u ≤ v in RN−1 × (a, b).
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Step 1 : Λ ̸= ∅

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

In Ω = RN−1 × (a, b), suppose w ∈ W 2,α
loc (Ω) ∩ C0(Ω) is a function

satisfying {
−∆w + c(x , y)w ≤ 0 in Ω, with |c| ≤ γ,

w ≤ 0 in ∂Ω,

and
w ≤ Ceµ|x |,

for some positive constants γ, C, and µ. There is a constant δ,
depending only on N, γ and µ, such that if

0 < b − a < δ,

then w ≤ 0 in Ω.
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Step 1 : Λ ̸= ∅
Definition (Open sets with good section)
An open set Ω ⊂ RN has a good section in direction eN if it
satisfies the following conditions :

1- For any R > 0 ; we have

CeN (R) = (B′(0′, R) × ReN) ∩ Ω is a bounded subset of RN .

2-
sup

x ′∈RN−1
L1(SeN

x ′ ) < +∞,

where SeN
x ′ := ({x ′} × ReN) ∩ Ω.

In the remainder, we fix
SeN (Ω) := sup

x ′∈RN−1
L1(SeN

x ′ ).

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 17 / 46



Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Step 1 : Λ ̸= ∅

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 18 / 46



Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Step 1 : Λ ̸= ∅

Theorem (B.-Farina-Sciunzi (2025))

Assume δ, γ ≥ 0, N ≥ 2 and let Ω be an open subset of RN with good
section in the direction eN . Let f ∈ Lip(R), a > 0 and
u, v ∈ H1

loc(Ω) ∩ C0(Ω) such that
−∆u − f (u) ≤ −∆v − f (v) in D′(Ω),

|u|, |v | ≤ a|x |δeγ|x | in Ω,
u ≤ v on ∂Ω.

Assume that Ω satisfies the following property :

sup
x ′∈RN−1

( ∫
SeN

x′

|xN |2δe2γ|xN |dxN

)
< +∞.

Then, there exists ε = ε(Lf , γ) > 0 such that
SeN (Ω) < ε =⇒ u ≤ v in Ω.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 19 / 46



Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Step 1 : Λ ̸= ∅

Theorem (B.-Farina-Sciunzi (2025))

Assume δ, γ ≥ 0, N ≥ 2 and let Ω be an open subset of RN with good
section in the direction eN . Let f ∈ Lip(R), a > 0 and
u, v ∈ H1

loc(Ω) ∩ C0(Ω) such that
−∆u − f (u) ≤ −∆v − f (v) in D′(Ω),

|u|, |v | ≤ a|x |δeγ|x | in Ω,
u ≤ v on ∂Ω.

Assume that Ω satisfies the following property :

sup
x ′∈RN−1

( ∫
SeN

x′

|xN |2δe2γ|xN |dxN

)
< +∞.

Then, there exists ε = ε(Lf , γ) > 0 such that
SeN (Ω) < ε =⇒ u ≤ v in Ω.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 19 / 46



Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Step 2 : t̃ := sup Λ = +∞

Proposition (t̃ < +∞)
For every δ ∈ (0, t̃

2) there is ε(δ) > 0 such that

∀ ε ∈ (0, ε(δ)) u ≤ ut̃+ε in Σg
δ,t̃−δ

.
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Step 2 : t̃ := sup Λ = +∞

We are led to consider the following problem :

−∆v = f (v) in K,
v ≥ 0 in K,
v = 0 on ∂K,

v(x1) = 1 where x1 ∈ K,
v(x2) = 0 where x2 ∈ K.

where K is a bounded connected set.
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1 Monotonicity results when f (0) ≥ 0.
Monotonicity results in globally Lipschitz-continuous
epigraphs.
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

2 Monotonicity results regardless the sign of f (0).

3 Classification results for non-negative solutions to (SPE).
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Class G
In the proof, we are led to consider the sequence

gk(x ′) = g(x ′ + (xk)′) where (gk(0))k∈N is bounded.

g globally Lipschitz-continuous in RN−1 + Ascoli-Arzelá Theorem
imply

gk → g∞ uniformly on every compact sets of RN−1.

Definition (Class G)
Assume N ≥ 2. We say that a continuous function g : RN−1 7→ R
belongs to the class G, if it satisfies the following compactness
property
(P) Any sequence (gk) of translations of g, which is bounded at
some fixed point of RN−1, admits a subsequence converging
uniformly on every compact sets of RN−1.
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Examples of functions belonging in the class G.

Example :
Uniformly continuous functions on RN−1.
Coercive continuous functions on RN−1.

Functions g : RN−1 → R such that there exists a continuous
bijection Φ : R → R such that Φ ◦ g ∈ G. For instance, if
N = 2, the function

g1(x) = ex ,

belongs in the class G and is neither uniformly continuous nor
coercive.
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Monotonicity results

Theorem (B.-Farina-Sciunzi (2025))
Let N ≥ 2 and let Ω be an epigraph bounded from below defined
by a function g ∈ G and satisfying a uniform exterior cone
condition.
Let u ∈ C0(Ω) ∩ H1

loc(Ω) be a distributional solution to (SPE).
If

f ∈ Lip([0, +∞)) with f (0) ≥ 0 and u has at most
exponential growth on finite strips.
f ∈ Liploc([0, +∞)) with f (0) ≥ 0 and u is bounded on finite
strips.

Then u is strictly increasing in the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.
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Uniform exterior cone condition

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 26 / 46



Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Uniform exterior cone condition

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 26 / 46



Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Uniform exterior cone condition

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 26 / 46



Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

1 Monotonicity results when f (0) ≥ 0.
Monotonicity results in globally Lipschitz-continuous
epigraphs.
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

2 Monotonicity results regardless the sign of f (0).

3 Classification results for non-negative solutions to (SPE).

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 27 / 46



Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

when f (0) < 0

Theorem (Cortázar-Elgueta-Garciá-Melian (2016))

Assume N ≥ 2. The only classical solution, possibly unbounded, to
problem 

−∆u = u − 1 in RN
+,

u ≥ 0 in RN
+,

u = 0 on ∂RN
+,

(1)

is the function

u(x) = 1 − cos(xN) for any x ∈ RN
+.

Remark : This Theorem was first demonstrated by A. Farina and
B. Sciunzi in dimension 2

Question : Can we state monotonicity results for solutions of
(SPE) defined in epigraphs even if f (0) < 0 ?
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Existing works

Theorem (Berestycki-Caffarelli-Nirenberg (1993))

Let u ∈ C2(RN
+) be a bounded solution to (SPE) in the half-space,

with f a locally Lipschitz-continuous function which satisfies

f (sup u) ≤ 0.

Then u is strictly increasing in the xN−direction, i.e, ∂u
∂xN

> 0 in
RN

+ and u only depends on the variable xN and f (sup u) = 0.

Conjecture
If there is a bounded solution u to (SPE) with Ω = RN

+ then

f (sup u) = 0.
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Existing works

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Let u ∈ C2(R2
+) be a solution to (SPE) in R2

+, with
f ∈ Lip([0, +∞)). Then,

∂u
∂x2

> 0 in R2
+.

Theorem (Farina-Sciunzi (2014))

Let u ∈ C2(R2
+) be a solution to (SPE) in R2

+, with
f ∈ Liploc([0, +∞)). Then,

∂u
∂x2

> 0 in R2
+.
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Theorem (Farina-Sciunzi (2014))

Let u ∈ C2(R2
+) be a solution to (SPE) in R2

+, with
f ∈ Liploc([0, +∞)). Then,

∂u
∂x2

> 0 in R2
+.
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Existing works

Question : What happens when the geometry of Ω is more
complex ?

Theorem (Esteban-Lions (1982))
Let g ∈ C1(RN−1) such that

lim
|x ′|→+∞

g(x ′) = +∞,

and Ω be its epigraph. Let f ∈ Liploc([0, +∞)) and u ∈ C2(Ω) be
a classical solution of (SPE). Then u is strictly increasing in the
xN−direction, i.e,

∂u
∂xN

> 0 in Ω.
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Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Ω be a coercive continuous epigraph. Assume
f ∈ Liploc([0, +∞)) and let u ∈ C0(Ω) ∩ H1

loc(Ω) be a
distributional solution to (SPE). Then u is strictly increasing in the
xN -direction, i.e., ∂u

∂xN
> 0 in Ω.

Remarks :
There is no assumption concerning the smoothness of Ω and
the sign of f (0).

We recover Theorem of M.J. Esteban and P.L. Lions.
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Our contributions

Theorem (B.-Farina-Sciunzi)

Let Ω be any continuous epigraph bounded from below and let
f ∈ Liploc([0, ∞)) be any non-increasing function. Let
u ∈ C0(Ω) ∩ H1

loc(Ω) be a distributional solution to (SPE) with at
most polynomial growth on finite strips.
Then u is strictly increasing, i.e.,

∂u
∂xN

> 0 in Ω

.
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The assumption f locally or globally Lipschitz-continuous is sharp.

The bounded function

u(x) =
{

1 − (xN − 1)4 if 0 ≤ xN ≤ 1,
1 if xN > 1,

is a classical C2 solution to (SPE), where f is given by the
following function

f (t) =


12 if t < 0,

12
√

1 − t if 0 ≤ t ≤ 1,
0 if t > 1.
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Existing results

Theorem (Farina (2007))

Let 0 < α < 1 and let Ω be a C2,α coercive epigraph. Let
u ∈ C2(Ω) be a bounded solution to

−∆u = up in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω.

(2)

with {
1 < p < +∞ if N ≤ 11,

1 < p < pJL(N − 1) if N ≥ 12.

Then,
u ≡ 0.

where pJL(N) := (N−2)2−4N+8
√

N−1
(N−2)(N−10) is the Joseph-Lundgren

exponent.
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Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Existing results

Theorem (Dupaigne-Farina (2022))

Let Ω ⊂ RN denote a locally Lipschitz-continuous coercive
epigraph and u ∈ C2(Ω) ∩ C0(Ω) be a bounded solution of

−∆u = f (u) in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω,

(SPE+)

Assume that f ∈ C1([0, +∞)), f (t) > 0 for t > 0 and
2 ≤ N ≤ 11. Then f (0) = 0 and u ≡ 0.
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Classification results for non-negative solutions to (SPE).

Idea of the proof

Boundedness of u and monotonicity of u imply that

v(x1, · · · xN−1) = lim
xN→+∞

u(x ′, xN),

exists and is a classical stable 2 solution to

−∆v = f (v) in RN−1.

Finally, the authors used Liouville-type results established in the
whole-space.

2. that is, for every ϕ ∈ C1
c (RN−1), we have∫

RN−1
f ′(v)ϕ2 ≤

∫
RN−1

|∇ϕ|2.
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Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Ω be an epigraph bounded from below defined by a function
g ∈ G and satisfying a uniform exterior cone condition.
Let u ∈ C0(Ω) ∩ H1

loc(Ω) be a bounded distributional solution to
−∆u = f (u) in Ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω,

Assume that f ∈ C1([0, +∞)), f (t) > 0 for t > 0 and
2 ≤ N ≤ 11, then u ≡ 0 and f (0) = 0.
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Classification results for non-negative solutions to (SPE).

Theorem (Dupaigne-Farina (2022))
Assume that u ∈ C2(Rp) is bounded below and that u is a stable
solution of

−∆u = f (u) in Rp.

where f : R :→ R is locally Lipschitz-continuous and nonnegative.
If 1 ≤ p ≤ 10, then u must be constant.

Remarks : This theorem is sharp. Indeed if p ≥ 11, for f (u) = uk ,
k sufficiently large, there exists nontrivial positive bounded stable
solution to the Lame-Endem equation.
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Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Assume N ≥ 12 and let Ω be an epigraph bounded from below
defined by a function g ∈ G and satisfying a uniform exterior cone
condition.
Let u ∈ C0(Ω) ∩ H1

loc(Ω) be a bounded distributional solution to
−∆u = f (u) in Ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω,

where f ∈ C1([0, +∞)) satisfies f (t) > 0 for t > 0 and
lim inft→0+

f (t)
ts > 0, for some s ∈

[
0, N−3

N−5

)
.

Then u ≡ 0 and f (0) = 0.
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Classification results for non-negative solutions to (SPE).

Step 2 : t̃ := sup Λ = +∞

There exists δ ∈ (0, t̃
2) such that

∀ k ≥ 1 ∃ εk ∈
(

0,
1
k

)
, ∃ xk ∈ Σg

δ,t̃−δ
: u(xk) > ut̃+ϵk (xk),

and so
0 ≤ g((xk)′) < g((xk)′) + δ ≤ xk

N ≤ t̃ − δ.

thus xk
N → x∞.

We define the sequence

vk(x) = ũ(x ′ + (xk)′, xN)
u(xk)

where ũ is the extension of u by 0 outside Ω.
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Classification results for non-negative solutions to (SPE).

Step 2 : t̃ := sup Λ = +∞



−∆vk = fk(vk) := f (u(xk)vk)
u(xk) in Ωk ,

vk > 0 in Ωk ,
vk = 0 on ∂Ωk ,

vk(0′, xk
N) = 1,

vk(0′, xk
N) > vk,t̃+ϵk (0′, xk

N) (contradiction assumption),
vk ≤ vk,t̃ in Σgk

t̃ since u ≤ ut̃ in Σg
t̃ .

where Ωk := {xN > gk(x ′)} and Σgk
t̃ = {gk(x ′) < xN < t̃} with

gk(x ′) = g(x ′ + (xk)′).
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Monotonicity results when f (0) ≥ 0.
Monotonicity results regardless the sign of f (0).

Classification results for non-negative solutions to (SPE).

Step 2 : t̃ := sup Λ = +∞
We can prove

∃g∞ ∈ C0(RN−1) such that gk → g∞ in C0
loc(RN−1),

∃f∞ ∈ Lip([0, +∞)) such that fk → f∞ in C0
loc([0, +∞)),

and let K := B′(0′, r) × (−T , T ), (T > 2t̃) we can prove that,

∃v∞ ∈ C0(K) such that vk → v∞ in C0
loc(K).

−∆v∞ = f∞(v∞) in Cg∞(0′, r , T ),
v∞ ≥ 0 in Cg∞(0′, r , T ),
v∞ = 0 on Cg∞(0′, r , T ) ∩ {xN = g∞},

v∞(0′, x∞) = 1,
v∞(0′, x∞) = v∞,t̃(0′, x∞) since (0′, x∞) ∈ Σg∞

t̃ .

where Cg∞(0′, r , T ) = B′(0′, r) × (−T , T ) ∩ {xN > g∞} (see on
board)
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Step 2 : t̃ := sup Λ = +∞

By applying the maximum principle to v∞,t̃ − v∞ in Σg∞
t̃ , we get

v∞ = v∞,t̃ in Σg∞
t̃ . (3)

By applying the maximum principle to v∞ in Cg∞(0′, r , T ), we get
−∆v∞ ≥ f∞(v∞) − f (0) ≥ −Lf∞v∞ in Cg∞(0′, r , T ),

v∞ ≥ 0 in Cg∞(0′, r , T ),
v∞(0′, x∞) = 1,

0 = v∞(0′, g∞(0′)) = v∞(0′, 2t̃ − g∞(0′)) by (3).
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