Monotonicity results for solutions of semilinear Poisson equation in epigraphs and applications

Nicolas Beuvin, LAMFA

Team EDPA Day

30 September 2025, Institut Camille Jordan, Lyon

joint work with Alberto Farina (LAMFA-UPJV) and Berardino Sciunzi (University of Calabria)

$$\begin{cases}
-\Delta u = f(u) & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(SPE)

where

• $f:[0,+\infty)\to\mathbb{R}$ is a locally or globally Lipschitz-continuous function.

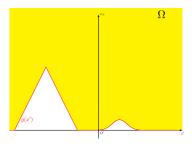
$$\begin{cases}
-\Delta u = f(u) & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(SPE)

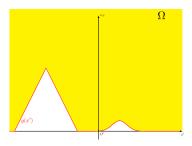
where

- $f:[0,+\infty)\to\mathbb{R}$ is a locally or globally Lipschitz-continuous function.
- $\Omega \subset \mathbb{R}^N$ is an epigraph bounded from below, i.e

$$\Omega := \{x = (x', x_N) \in \mathbb{R}^N, x_N > g(x')\},$$

where $g: \mathbb{R}^{N-1} \to \mathbb{R}$ is a continuous function and bounded from below.





Highlight properties of solutions to the problem (SPE) as :

- monotonicity (i.e, $\frac{\partial u}{\partial x_N} > 0$),
- Classification results.

$$f(u) = u - u^3$$

Allen-Cahn equation:

$$f(u) = u - u^3$$

Allen-Cahn equation:

 Model of phase transition phenomena,

$$f(u) = u - u^3$$

Allen-Cahn equation:

- Model of phase transition phenomena,
- De Giorgi's conjecture (1978)^a
- a. E. DE GIORGI Convergence Problems for Functionnals and Operators. Proceeding of the Int. Meeting on Recent Methods in Nonlinear Analysis, 1979, 131-188.

$$f(u)=u-u^3$$

Allen-Cahn equation:

- Model of phase transition phenomena,
- De Giorgi's conjecture (1978)^a
- a. E. DE GIORGI Convergence Problems for Functionnals and Operators. Proceeding of the Int. Meeting on Recent Methods in Nonlinear Analysis, 1979, 131-188.

$$f(u) = u^p$$

Lane-Emden equation:

$$f(u) = u - u^3$$

Allen-Cahn equation:

- Model of phase transition phenomena,
- De Giorgi's conjecture (1978)^a
- a. E. DE GIORGI Convergence Problems for Functionnals and Operators. Proceeding of the Int. Meeting on Recent Methods in Nonlinear Analysis, 1979, 131-188.

$$f(u) = u^p$$

Lane-Emden equation:

 Stellar structure in Astrophysics,

$$f(u) = u - u^3$$

Allen-Cahn equation:

- Model of phase transition phenomena,
- De Giorgi's conjecture (1978)^a
- a. E. DE GIORGI Convergence Problems for Functionnals and Operators. Proceeding of the Int. Meeting on Recent Methods in Nonlinear Analysis, 1979, 131-188.

$$f(u) = u^p$$

Lane-Emden equation:

- Stellar structure in Astrophysics,
- A limit problem, after a blow-up procedure near the boundary (see Gidas-Spruck ^a)

a. B. Gidas, J. Spruck. A Priori Bounds for Positive Solutions of Nonlinear Elliptic Equations. Commun. in. PDE. 6, 883-901 (1981).

- **1** Monotonicity results when $f(0) \ge 0$.
 - Monotonicity results in globally Lipschitz-continuous epigraphs.
 - Moving plane method and new comparison principles.
 - Monotonicity results in epigraphs belonging to the class \mathcal{G} .
- 2 Monotonicity results regardless the sign of f(0).
- 3 Classification results for non-negative solutions to (SPE).

- **1** Monotonicity results when $f(0) \ge 0$.
 - Monotonicity results in globally Lipschitz-continuous epigraphs.
 - Moving plane method and new comparison principles.
 - ullet Monotonicity results in epigraphs belonging to the class \mathcal{G} .
- 2 Monotonicity results regardless the sign of f(0).
- 3 Classification results for non-negative solutions to (SPE).

Theorem (Dancer (1992))

In the half-space $\mathbb{R}_+^N=\{x=(x',x_N)\in\mathbb{R}^N,x_N>0\}$, Let $u\in C^2(\overline{\mathbb{R}_+^N})$ be a bounded solution of (SPE). Assume that $f\in C^1([0,+\infty))$, with f(0)>0 or both f(0)=0 and $f'(0)\geq 0$. Then u is strictly increasing in the x_N -direction, i.e.,

$$\frac{\partial u}{\partial x_N} > 0$$
 in Ω .

Theorem (Dancer (1992))

In the half-space $\mathbb{R}_+^N=\{x=(x',x_N)\in\mathbb{R}^N,x_N>0\}$, Let $u\in C^2(\overline{\mathbb{R}_+^N})$ be a bounded solution of (SPE). Assume that $f\in C^1([0,+\infty))$, with f(0)>0 or both f(0)=0 and $f'(0)\geq 0$. Then u is strictly increasing in the x_N -direction, i.e.,

$$\frac{\partial u}{\partial x_N} > 0 \text{ in } \Omega.$$

<u>Remark</u>: The need to consider unbounded solutions is well illustrated by following examples:

- $u(x) = \alpha x_N$ with $f \equiv 0$.
- $u(x) = \ln(1 + x_N)$ with $f(t) = e^{-2t}$.

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Assume that $u \in C^2(\overline{\mathbb{R}^N_+})$ is a solution of (SPE) where f is a globally Lipschitz-continuous function with $f(0) \geq 0$. Then, the function u satisfies

$$\frac{\partial u}{\partial x_N} > 0 \quad \text{in } \mathbb{R}_+^N.$$

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Assume that $u \in C^2(\overline{\mathbb{R}^N_+})$ is a solution of (SPE) where f is a globally Lipschitz-continuous function with $f(0) \geq 0$. Then, the function u satisfies

$$\frac{\partial u}{\partial x_N} > 0 \quad in \ \mathbb{R}_+^N.$$

Remark: This Theorem does not applies to function as $f(t) = t - t^3$ (Allen-Cahn equation) or $f(t) = t^p$ (Lane-Emden equation).

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Assume that $u \in C^2(\overline{\mathbb{R}^N_+})$ is a solution of (SPE) where f is a globally Lipschitz-continuous function with $f(0) \geq 0$. Then, the function u satisfies

$$\frac{\partial u}{\partial x_N} > 0 \quad in \ \mathbb{R}_+^N.$$

Remark: This Theorem does not applies to function as $f(t) = t - t^3$ (Allen-Cahn equation) or $f(t) = t^p$ (Lane-Emden equation).

<u>Question</u>: Does the conclusion of previous Theorem still holds for unbounded solutions of (SPE) in the case where f is merely locally Lipschitz-continuous?

Theorem (Farina (2020))

Assume $N \geq 2$, $\Omega = \mathbb{R}^N_+$, $f \in Lip_{loc}([0, +\infty))$ with $f(0) \geq 0$ and let $u \in C^2(\overline{\mathbb{R}^N_+})$ be a solution to (SPE).

$$\forall t > 0, \ \exists C(t) > 0 \text{ such that } 0 < u \le C(t) \quad \text{in } \mathbb{R}^{N-1} \times [0, t].$$

Then u is strictly increasing in the x_N -direction, i.e,

$$\frac{\partial u}{\partial x_N} > 0 \text{ in } \mathbb{R}_+^N.$$

Theorem (Farina (2020))

Assume $N \geq 2$, $\Omega = \mathbb{R}^N_+$, $f \in Lip_{loc}([0, +\infty))$ with $f(0) \geq 0$ and let $u \in C^2(\overline{\mathbb{R}^N_+})$ be a solution to (SPE).

$$\forall t > 0, \ \exists C(t) > 0 \text{ such that } 0 < u \le C(t) \quad \text{in } \mathbb{R}^{N-1} \times [0, t].$$

Then u is strictly increasing in the x_N -direction, i.e,

$$\frac{\partial u}{\partial x_N} > 0$$
 in \mathbb{R}_+^N .

Questions : What happens when the geometry of Ω is more complex?

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

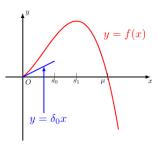
Assume $N \geq 2$, f be an Allen-Cahn type function, Ω be a globally Lipschitz-continuous epigraph and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution of (SPE).

Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

Assume $N \geq 2$, f be an Allen-Cahn type function, Ω be a globally Lipschitz-continuous epigraph and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution of (SPE).

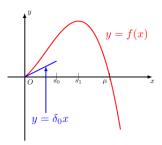
Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .



Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

Assume $N \geq 2$, f be an Allen-Cahn type function, Ω be a globally Lipschitz-continuous epigraph and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution of (SPE).

Then u is monotone, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .



Example:

$$f(u)=u-u^3.$$

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Ω be a globally Lipschitz-continuous epigraph bounded from below. Assume $f \in \text{Lip}([0,+\infty))$ with $f(0) \geq 0$ and let $u \in H^1_{loc}(\overline{\Omega}) \cap C^0(\overline{\Omega})$ be a distributional solution to (SPE) such that $\forall R > 0 \ \exists \ A(R), B(R) > 0$, such that,

$$u(x) \leq Ae^{B|x|} \quad \forall x \in \Omega \cap \{x_N < R\}.$$

Then u is strictly increasing in the x_N -direction, i.e.,

$$\frac{\partial u}{\partial x_N} > 0$$
 in Ω .

$$H^1_{loc}(\overline{\Omega}) := \{u : \Omega \to \mathbb{R}, u \text{ Lebesgue-mesurable} : u \in H^1(\Omega \cap B(0,R)), \forall R > 0\}.$$

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Ω be a globally Lipschitz-continuous epigraph bounded from below. Assume $f \in Lip_{loc}([0,+\infty))$ with $f(0) \geq 0$ and let $u \in C^0(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ be a distributional solution to (SPE) which is bounded on finite strips, i.e., for any R > 0,

$$\sup_{\Omega \cap \{x_N < R\}} u < +\infty.$$

Then u is strictly increasing in the x_N -direction, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Ω be a globally Lipschitz-continuous epigraph bounded from below. Assume $f \in Lip_{loc}([0,+\infty))$ with $f(0) \geq 0$ and let $u \in C^0(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ be a distributional solution to (SPE) which is bounded on finite strips, i.e., for any R > 0,

$$\sup_{\Omega \cap \{x_N < R\}} u < +\infty.$$

Then u is strictly increasing in the x_N -direction, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

<u>Remark</u>: This Theorem recovers the Theorem of A.Farina in the case of \mathbb{R}^N_+ .

- 1 Monotonicity results when $f(0) \ge 0$.
 - Monotonicity results in globally Lipschitz-continuous epigraphs.
 - Moving plane method and new comparison principles.
 - ullet Monotonicity results in epigraphs belonging to the class $\mathcal{G}.$
- 2 Monotonicity results regardless the sign of f(0).
- 3 Classification results for non-negative solutions to (SPE).

Monotonicity results in globally Lipschitz-continuous epigraphs.

Moving plane method and new comparison principles.

Monotonicity results in epigraphs belonging to the class *G*.

Moving plane method

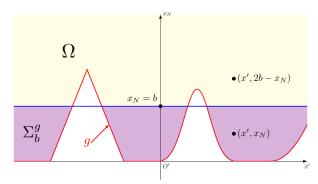
Prove that

$$\Lambda := \{t > 0 : u \leqslant u_b \text{ in } \Sigma_b^g, \ \forall \, 0 < b < t\} = \mathbb{R}_*^+.$$

Moving plane method

Prove that

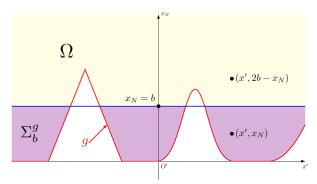
$$\Lambda := \{t > 0 : u \leqslant u_b \text{ in } \Sigma_b^g, \ \forall \, 0 < b < t\} = \mathbb{R}_*^+.$$



Moving plane method

Prove that

$$\Lambda := \{t > 0 : u \leqslant u_b \text{ in } \Sigma_b^g, \ \forall \ 0 < b < t\} = \mathbb{R}_*^+.$$



$$\bullet \forall x = (x', x_N) \in \Sigma_b^g, \qquad u_b(x) = u(x', 2b - x_N).$$

• If Σ_b^g is bounded (for instance when Ω is a coercive epigraph) then we can use maximum principles for domains with small volumes. ¹

^{1.} H. BERESTYCKI, L. NIRENBERG. On the method of moving planes and the sliding method. Bol. Soc. Bras. Mat, Vol 22 No 1, 1-37

- If Σ_b^g is bounded (for instance when Ω is a coercive epigraph) then we can use maximum principles for domains with small volumes. ¹
- ullet If $\Sigma_b^{
 m g}$ is unbounded then \cdots

^{1.} H. BERESTYCKI, L. NIRENBERG. On the method of moving planes and the sliding method. Bol. Soc. Bras. Mat, Vol 22 No 1, 1-37

Theorem (Farina (2020))

Let $N \ge 2$ and assume that $f \in Lip([0, +\infty))$. Let $u, v \in C^2(\mathbb{R}^{N-1} \times [a, b])$, with at most polynomial growth at infinity and satisfying

$$\begin{cases} -\Delta u - f(u) \le -\Delta v - f(v) & in \quad \mathbb{R}^{N-1} \times (a,b) \\ u \le v & on \quad \partial(\mathbb{R}^{N-1} \times (a,b)), \end{cases}$$

There exists $\varepsilon = \varepsilon(f) > 0$ such that, for any $(a,b) \subset \mathbb{R}$ with $0 < b - a < \varepsilon$ we have

$$u \leq v$$
 in $\mathbb{R}^{N-1} \times (a, b)$.

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

In $\Omega = \mathbb{R}^{N-1} \times (a,b)$, suppose $w \in W^{2,\alpha}_{loc}(\Omega) \cap C^0(\overline{\Omega})$ is a function satisfying

$$\left\{ \begin{array}{ccc} -\Delta w + c(x,y)w \leq 0 & \text{in} & \Omega, & \text{with } |c| \leq \gamma, \\ w \leq 0 & \text{in} & \partial \Omega, \end{array} \right.$$

and

$$w < Ce^{\mu|x|}$$
,

for some positive constants γ , C, and μ . There is a constant δ , depending only on N, γ and μ , such that if

$$0 < b - a < \delta$$
,

then

$$w < 0$$
 in Ω .

Definition (Open sets with good section)

An open set $\Omega \subset \mathbb{R}^N$ has a good section in direction e_N if it satisfies the following conditions :

1- For any R > 0; we have

$$C_{e_N}(R) = (B'(0',R) \times \mathbb{R}e_N) \cap \Omega$$
 is a bounded subset of \mathbb{R}^N .

2-

$$\sup_{x'\in\mathbb{R}^{N-1}}\mathcal{L}^1(S^{e_N}_{x'})<+\infty,$$

where
$$S_{x'}^{e_N} := (\{x'\} \times \mathbb{R}e_N) \cap \Omega$$
.

In the remainder, we fix

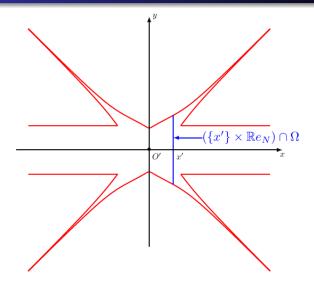
$$\mathtt{S}_{e_N}(\Omega) := \sup_{\mathtt{x}' \in \mathbb{R}^{N-1}} \mathcal{L}^1(S^{e_N}_{\mathtt{x}'}).$$

Monotonicity results in globally Lipschitz-continuous epigraphs.

Moving plane method and new comparison principles.

Monotonicity results in epigraphs belonging to the class *G*.

Step 1 : $\Lambda \neq \emptyset$



Step 1 : $\Lambda \neq \emptyset$

Theorem (B.-Farina-Sciunzi (2025))

Assume $\delta, \gamma \geq 0$, $N \geq 2$ and let Ω be an open subset of \mathbb{R}^N with good section in the direction e_N . Let $f \in Lip(\mathbb{R})$, a > 0 and $u, v \in H^1_{loc}(\overline{\Omega}) \cap C^0(\overline{\Omega})$ such that

$$\left\{ \begin{array}{lll} -\Delta u - f(u) \leq -\Delta v - f(v) & \text{in} & \mathcal{D}'(\Omega), \\ |u|, |v| \leq a|x|^{\delta} e^{\gamma|x|} & \text{in} & \Omega, \\ u \leq v & \text{on} & \partial \Omega. \end{array} \right.$$

Step 1 : $\Lambda \neq \emptyset$

Theorem (B.-Farina-Sciunzi (2025))

Assume $\delta, \gamma \geq 0$, $N \geq 2$ and let Ω be an open subset of \mathbb{R}^N with good section in the direction e_N . Let $f \in Lip(\mathbb{R})$, a > 0 and $u, v \in H^1_{loc}(\overline{\Omega}) \cap C^0(\overline{\Omega})$ such that

$$\left\{ \begin{array}{lll} -\Delta u - f(u) \leq -\Delta v - f(v) & \text{in} & \mathcal{D}'(\Omega), \\ |u|, |v| \leq a|x|^{\delta} e^{\gamma|x|} & \text{in} & \Omega, \\ u \leq v & \text{on} & \partial \Omega. \end{array} \right.$$

Assume that Ω satisfies the following property :

$$\sup_{x'\in\mathbb{R}^{N-1}} \left(\int_{S_{\sim}^{e_N}} |x_N|^{2\delta} e^{2\gamma|x_N|} dx_N \right) < +\infty.$$

Then, there exists
$$\varepsilon = \varepsilon(L_f, \gamma) > 0$$
 such that $S_{e_u}(\Omega) < \varepsilon \implies u < v \text{ in } \Omega.$

Monotonicity results in globally Lipschitz-continuous epigraphs. Moving plane method and new comparison principles. Monotonicity results in epigraphs belonging to the class *G*.

Step 2 :
$$\tilde{t} := \sup \Lambda = +\infty$$

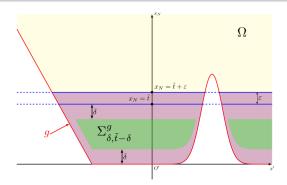
Monotonicity results in globally Lipschitz-continuous epigraphs. Moving plane method and new comparison principles. Monotonicity results in epigraphs belonging to the class \mathcal{G} .

Step 2 : $\tilde{t} := \sup \Lambda = +\infty$

Proposition ($\tilde{t} < +\infty$)

For every $\delta \in (0, \frac{\tilde{t}}{2})$ there is $\varepsilon(\delta) > 0$ such that

$$\forall \, \varepsilon \in (0, \varepsilon(\delta))$$
 $u \leq u_{\tilde{t}+\varepsilon}$ in $\overline{\Sigma_{\delta, \tilde{t}-\delta}^{g}}$.



Monotonicity results in globally Lipschitz-continuous epigraphs. Moving plane method and new comparison principles. Monotonicity results in epigraphs belonging to the class \mathcal{G} .

Step 2 :
$$\tilde{t} := \sup \Lambda = +\infty$$

We are led to consider the following problem:

$$\begin{cases} -\Delta v = f(v) & \text{in} & \mathcal{K}, \\ v \geq 0 & \text{in} & \mathcal{K}, \\ v = 0 & \text{on} & \partial \mathcal{K}, \\ v(x_1) = 1 & \text{where} & x_1 \in \mathcal{K}, \\ v(x_2) = 0 & \text{where} & x_2 \in \mathcal{K}. \end{cases}$$

where K is a bounded connected set.

- **1** Monotonicity results when $f(0) \ge 0$.
 - Monotonicity results in globally Lipschitz-continuous epigraphs.
 - Moving plane method and new comparison principles.
 - \bullet Monotonicity results in epigraphs belonging to the class $\mathcal{G}.$
- 2 Monotonicity results regardless the sign of f(0).
- 3 Classification results for non-negative solutions to (SPE).

Monotonicity results in globally Lipschitz-continuous epigraphs Moving plane method and new comparison principles. Monotonicity results in epigraphs belonging to the class \mathcal{G} .

Class \mathcal{G}

In the proof, we are led to consider the sequence

$$g_k(x') = g(x' + (x^k)')$$
 where $(g_k(0))_{k \in \mathbb{N}}$ is bounded.

Class \mathcal{G}

In the proof, we are led to consider the sequence

$$g_k(x') = g(x' + (x^k)')$$
 where $(g_k(0))_{k \in \mathbb{N}}$ is bounded.

g globally Lipschitz-continuous in $\mathbb{R}^{\mathit{N}-1}$ + Ascoli-Arzelá Theorem imply

 $g_k \to g_\infty$ uniformly on every compact sets of \mathbb{R}^{N-1} .

Class \mathcal{G}

In the proof, we are led to consider the sequence

$$g_k(x') = g(x' + (x^k)')$$
 where $(g_k(0))_{k \in \mathbb{N}}$ is bounded.

g globally Lipschitz-continuous in $\mathbb{R}^{\mathit{N}-1}$ + Ascoli-Arzelá Theorem imply

 $g_k \to g_\infty$ uniformly on every compact sets of \mathbb{R}^{N-1} .

Definition (Class G)

Assume $N \geq 2$. We say that a continuous function $g : \mathbb{R}^{N-1} \mapsto \mathbb{R}$ belongs to the class \mathcal{G} , if it satisfies the following compactness property

 (\mathcal{P}) Any sequence (g_k) of translations of g, which is bounded at some fixed point of \mathbb{R}^{N-1} , admits a subsequence converging uniformly on every compact sets of \mathbb{R}^{N-1} .

Examples of functions belonging in the class \mathcal{G} .

Example:

- Uniformly continuous functions on \mathbb{R}^{N-1} .
- Coercive continuous functions on \mathbb{R}^{N-1} .

Examples of functions belonging in the class \mathcal{G} .

Example:

- Uniformly continuous functions on \mathbb{R}^{N-1} .
- Coercive continuous functions on \mathbb{R}^{N-1} .
- Functions $g: \mathbb{R}^{N-1} \to \mathbb{R}$ such that there exists a continuous bijection $\Phi: \mathbb{R} \to \mathbb{R}$ such that $\Phi \circ g \in \mathcal{G}$.

Examples of functions belonging in the class \mathcal{G} .

Example:

- Uniformly continuous functions on \mathbb{R}^{N-1} .
- Coercive continuous functions on \mathbb{R}^{N-1} .
- Functions $g: \mathbb{R}^{N-1} \to \mathbb{R}$ such that there exists a continuous bijection $\Phi: \mathbb{R} \to \mathbb{R}$ such that $\Phi \circ g \in \mathcal{G}$. For instance, if N=2, the function

$$g_1(x) = e^x$$
,

belongs in the class $\ensuremath{\mathcal{G}}$ and is neither uniformly continuous nor coercive.

Monotonicity results

Theorem (B.-Farina-Sciunzi (2025))

Let $N \geq 2$ and let Ω be an epigraph bounded from below defined by a function $g \in \mathcal{G}$ and satisfying a uniform exterior cone condition.

Let $u \in C^0(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ be a distributional solution to (SPE). If

- $f \in Lip([0, +\infty))$ with $f(0) \ge 0$ and u has at most exponential growth on finite strips.
- $f \in Lip_{loc}([0,+\infty))$ with $f(0) \ge 0$ and u is bounded on finite strips.

Then u is strictly increasing in the x_N -direction, i.e.,

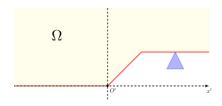
$$\frac{\partial u}{\partial x_N}>0 \ \ \text{in} \ \Omega.$$

Monotonicity results in globally Lipschitz-continuous epigraphs.

Moving plane method and new comparison principles.

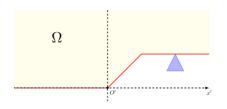
Monotonicity results in epigraphs belonging to the class G.

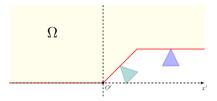
Uniform exterior cone condition



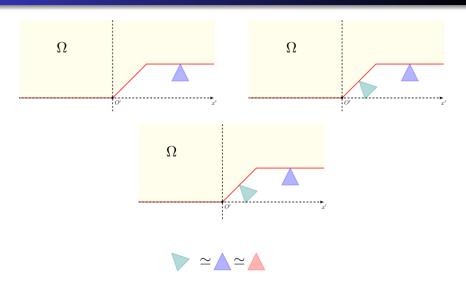
Monotonicity results in globally Lipschitz-continuous epigraphs. Moving plane method and new comparison principles. Monotonicity results in epigraphs belonging to the class \mathcal{G} .

Uniform exterior cone condition





Uniform exterior cone condition



- 1 Monotonicity results when $f(0) \ge 0$.
 - Monotonicity results in globally Lipschitz-continuous epigraphs.
 - Moving plane method and new comparison principles.
 - Monotonicity results in epigraphs belonging to the class \mathcal{G} .
- 2 Monotonicity results regardless the sign of f(0).
- 3 Classification results for non-negative solutions to (SPE).

when f(0) < 0

Theorem (Cortázar-Elgueta-Garciá-Melian (2016))

Assume $N \ge 2$. The only classical solution, possibly unbounded, to problem

$$\begin{cases}
-\Delta u = u - 1 & \text{in } \mathbb{R}_{+}^{N}, \\
u \ge 0 & \text{in } \mathbb{R}_{+}^{N}, \\
u = 0 & \text{on } \partial \mathbb{R}_{+}^{N},
\end{cases} (1)$$

is the function

$$u(x) = 1 - \cos(x_N)$$
 for any $x \in \mathbb{R}_+^N$.

Remark: This Theorem was first demonstrated by A. Farina and B. Sciunzi in dimension 2

when f(0) < 0

Theorem (Cortázar-Elgueta-Garciá-Melian (2016))

Assume $N \ge 2$. The only classical solution, possibly unbounded, to problem

$$\begin{cases}
-\Delta u = u - 1 & \text{in} \quad \mathbb{R}_{+}^{N}, \\
u \ge 0 & \text{in} \quad \mathbb{R}_{+}^{N}, \\
u = 0 & \text{on} \quad \partial \mathbb{R}_{+}^{N},
\end{cases} \tag{1}$$

is the function

$$u(x) = 1 - \cos(x_N)$$
 for any $x \in \mathbb{R}_+^N$.

Remark: This Theorem was first demonstrated by A. Farina and B. Sciunzi in dimension 2

Question : Can we state monotonicity results for solutions of (SPE) defined in epigraphs even if f(0) < 0?

Theorem (Berestycki-Caffarelli-Nirenberg (1993))

Let $u \in C^2(\overline{\mathbb{R}^N_+})$ be a bounded solution to (SPE) in the half-space, with f a locally Lipschitz-continuous function which satisfies

$$f(\sup u) \leq 0.$$

Then u is strictly increasing in the x_N -direction, i.e, $\frac{\partial u}{\partial x_N} > 0$ in \mathbb{R}^N_+ and u only depends on the variable x_N and $f(\sup u) = 0$.

Theorem (Berestycki-Caffarelli-Nirenberg (1993))

Let $u \in C^2(\overline{\mathbb{R}^N_+})$ be a bounded solution to (SPE) in the half-space, with f a locally Lipschitz-continuous function which satisfies

$$f(\sup u) \leq 0.$$

Then u is strictly increasing in the x_N -direction, i.e, $\frac{\partial u}{\partial x_N} > 0$ in \mathbb{R}^N_+ and u only depends on the variable x_N and $f(\sup u) = 0$.

Conjecture

If there is a bounded solution u to (SPE) with $\Omega=\mathbb{R}_+^{\it N}$ then

$$f(\sup u) = 0.$$

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Let $u \in C^2(\overline{\mathbb{R}^2_+})$ be a solution to (SPE) in \mathbb{R}^2_+ , with $f \in Lip([0, +\infty))$. Then,

$$\frac{\partial u}{\partial x_2} > 0$$
 in \mathbb{R}^2_+ .

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Let $u \in C^2(\overline{\mathbb{R}^2_+})$ be a solution to (SPE) in \mathbb{R}^2_+ , with $f \in Lip([0, +\infty))$. Then,

$$\frac{\partial u}{\partial x_2} > 0$$
 in \mathbb{R}^2_+ .

Theorem (Farina-Sciunzi (2014))

Let $u \in C^2(\overline{\mathbb{R}^2_+})$ be a solution to (SPE) in \mathbb{R}^2_+ , with $f \in Lip_{loc}([0, +\infty))$. Then,

$$\frac{\partial u}{\partial x_2} > 0$$
 in \mathbb{R}^2_+ .

Question : What happens when the geometry of Ω is more complex?

<u>Question</u>: What happens when the geometry of Ω is more complex?

Theorem (Esteban-Lions (1982))

Let $g \in C^1(\mathbb{R}^{N-1})$ such that

$$\lim_{|x'|\to+\infty}g(x')=+\infty,$$

and Ω be its epigraph. Let $f \in Lip_{loc}([0, +\infty))$ and $u \in C^2(\overline{\Omega})$ be a classical solution of (SPE). Then u is strictly increasing in the x_N -direction, i.e,

$$\frac{\partial u}{\partial x_N} > 0$$
 in Ω .

Theorem (B.-Farina-Sciunzi (2025))

Let Ω be a coercive continuous epigraph. Assume $f \in Lip_{loc}([0,+\infty))$ and let $u \in C^0(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ be a distributional solution to (SPE). Then u is strictly increasing in the x_N -direction, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Remarks:

• There is no assumption concerning the smoothness of Ω and the sign of f(0).

Theorem (B.-Farina-Sciunzi (2025))

Let Ω be a coercive continuous epigraph. Assume $f \in Lip_{loc}([0,+\infty))$ and let $u \in C^0(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ be a distributional solution to (SPE). Then u is strictly increasing in the x_N -direction, i.e., $\frac{\partial u}{\partial x_N} > 0$ in Ω .

Remarks:

- There is no assumption concerning the smoothness of Ω and the sign of f(0).
- We recover Theorem of M.J. Esteban and P.L. Lions.

Theorem (B.-Farina-Sciunzi)

Let Ω be any continuous epigraph bounded from below and let $f \in Lip_{loc}([0,\infty))$ be any non-increasing function. Let $u \in C^0(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ be a distributional solution to (SPE) with at most polynomial growth on finite strips.

Then u is strictly increasing, i.e.,

$$\frac{\partial u}{\partial x_N} > 0$$
 in Ω

.

The assumption f locally or globally Lipschitz-continuous is sharp.

The assumption f locally or globally Lipschitz-continuous is sharp. The bounded function

$$u(x) = \begin{cases} 1 - (x_N - 1)^4 & \text{if } 0 \le x_N \le 1, \\ 1 & \text{if } x_N > 1, \end{cases}$$

is a classical C^2 solution to (SPE), where f is given by the following function

$$f(t) = \begin{cases} 12 & \text{if } t < 0, \\ 12\sqrt{1-t} & \text{if } 0 \le t \le 1, \\ 0 & \text{if } t > 1. \end{cases}$$

- 1 Monotonicity results when $f(0) \ge 0$.
 - Monotonicity results in globally Lipschitz-continuous epigraphs.
 - Moving plane method and new comparison principles.
 - Monotonicity results in epigraphs belonging to the class \mathcal{G} .
- 2 Monotonicity results regardless the sign of f(0).
- 3 Classification results for non-negative solutions to (SPE).

Existing results

Theorem (Farina (2007))

Let $0 < \alpha < 1$ and let Ω be a $C^{2,\alpha}$ coercive epigraph. Let $u \in C^2(\overline{\Omega})$ be a bounded solution to

$$\begin{cases}
-\Delta u = u^p & \text{in } \Omega, \\
u \ge 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases} \tag{2}$$

with

$$\left\{ \begin{array}{ll} 1$$

Then,

$$u \equiv 0$$
.

where $p_{JL}(N) := \frac{(N-2)^2 - 4N + 8\sqrt{N-1}}{(N-2)(N-10)}$ is the Joseph-Lundgren exponent.

Existing results

Theorem (Dupaigne-Farina (2022))

Let $\Omega \subset \mathbb{R}^N$ denote a locally Lipschitz-continuous coercive epigraph and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a bounded solution of

$$\begin{cases} -\Delta u = f(u) & \text{in} \quad \Omega, \\ u \ge 0 & \text{in} \quad \Omega, \\ u = 0 & \text{on} \quad \partial \Omega, \end{cases}$$
 (SPE+)

Assume that $f \in C^1([0,+\infty))$, f(t) > 0 for t > 0 and $2 \le N \le 11$. Then f(0) = 0 and $u \equiv 0$.

Idea of the proof

Boundedness of u and monotonicity of u imply that

$$v(x_1,\cdots x_{N-1})=\lim_{x_N\to+\infty}u(x',x_N),$$

exists and is a classical stable 2 solution to

$$-\Delta v = f(v)$$
 in \mathbb{R}^{N-1} .

Finally, the authors used Liouville-type results established in the whole-space.

2. that is, for every $\phi \in C^1_c(\mathbb{R}^{N-1})$, we have

$$\int_{\mathbb{R}^{N-1}} f'(v)\phi^2 \le \int_{\mathbb{R}^{N-1}} |\nabla \phi|^2.$$

Theorem (B.-Farina-Sciunzi (2025))

Let Ω be an epigraph bounded from below defined by a function $g \in \mathcal{G}$ and satisfying a uniform exterior cone condition. Let $u \in C^0(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ be a bounded distributional solution to

$$\begin{cases}
-\Delta u = f(u) & \text{in } \Omega, \\
u \ge 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$

Assume that $f \in C^1([0,+\infty))$, f(t) > 0 for t > 0 and $2 \le N \le 11$, then $u \equiv 0$ and f(0) = 0.

Theorem (Dupaigne-Farina (2022))

Assume that $u \in C^2(\mathbb{R}^p)$ is bounded below and that u is a stable solution of

$$-\Delta u = f(u)$$
 in \mathbb{R}^p .

where $f: \mathbb{R} : \to \mathbb{R}$ is locally Lipschitz-continuous and nonnegative. If $1 \le p \le 10$, then u must be constant.

Theorem (Dupaigne-Farina (2022))

Assume that $u \in C^2(\mathbb{R}^p)$ is bounded below and that u is a stable solution of

$$-\Delta u = f(u)$$
 in \mathbb{R}^p .

where $f: \mathbb{R} : \to \mathbb{R}$ is locally Lipschitz-continuous and nonnegative. If $1 \le p \le 10$, then u must be constant.

Remarks: This theorem is sharp. Indeed if $p \ge 11$, for $f(u) = u^k$, k sufficiently large, there exists nontrivial positive bounded stable solution to the Lame-Endem equation.

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Assume $N \geq 12$ and let Ω be an epigraph bounded from below defined by a function $g \in \mathcal{G}$ and satisfying a uniform exterior cone condition.

Let $u \in C^0(\overline{\Omega}) \cap H^1_{loc}(\overline{\Omega})$ be a bounded distributional solution to

$$\left\{ \begin{array}{lll} -\Delta u = f(u) & in & \Omega, \\ u \geq 0 & in & \Omega, \\ u = 0 & on & \partial \Omega, \end{array} \right.$$

where $f \in C^1([0,+\infty))$ satisfies f(t)>0 for t>0 and $\liminf_{t\to 0^+} \frac{f(t)}{t^s}>0$, for some $s\in \left[0,\frac{N-3}{N-5}\right)$. Then $u\equiv 0$ and f(0)=0.

There exists $\delta \in (0, \frac{\tilde{t}}{2})$ such that

$$\forall k \geq 1 \quad \exists \, \varepsilon_k \in \left(0, \frac{1}{k}\right), \, \exists \, x^k \in \overline{\Sigma^{g}_{\delta, \tilde{t} - \delta}} \quad : \quad u(x^k) > u_{\tilde{t} + \epsilon_k}(x^k),$$

and so

$$0 \le g((x^k)') < g((x^k)') + \delta \le x_N^k \le \tilde{t} - \delta.$$

thus $x_N^k \to x_\infty$.

We define the sequence

$$v_k(x) = \frac{\tilde{u}(x' + (x^k)', x_N)}{u(x^k)}$$

where \tilde{u} is the extension of u by 0 outside Ω .

$$\begin{cases}
-\Delta v_k = f_k(v_k) := \frac{f(u(x^k)v_k)}{u(x^k)} & \text{in } \Omega^k, \\
v_k > 0 & \text{in } \Omega^k, \\
v_k = 0 & \text{on } \partial \Omega^k,
\end{cases}$$

$$\left\{ \begin{array}{lll} -\Delta v_k = f_k(v_k) := \frac{f(u(x^k)v_k)}{u(x^k)} & \text{in} & \Omega^k, \\ v_k > 0 & \text{in} & \Omega^k, \\ v_k = 0 & \text{on} & \partial \Omega^k, \\ v_k(0', x_N^k) = 1, \end{array} \right.$$

$$\begin{cases} -\Delta v_k = f_k(v_k) := \frac{f(u(x^k)v_k)}{u(x^k)} & \text{in} \quad \Omega^k, \\ v_k > 0 & \text{in} \quad \Omega^k, \\ v_k = 0 & \text{on} \quad \partial \Omega^k, \\ v_k(0', x_N^k) = 1, \\ v_k(0', x_N^k) > v_{k,\tilde{t}+\epsilon_k}(0', x_N^k) & \text{(contradiction assumption)}, \end{cases}$$

$$\begin{cases} -\Delta v_k = f_k(v_k) := \frac{f(u(x^k)v_k)}{u(x^k)} & \text{in} \quad \Omega^k, \\ v_k > 0 & \text{in} \quad \Omega^k, \\ v_k = 0 & \text{on} \quad \partial \Omega^k, \\ v_k(0', x_N^k) = 1, \\ v_k(0', x_N^k) > v_{k,\tilde{t}+\epsilon_k}(0', x_N^k) & \text{(contradiction assumption)}, \\ v_k \leq v_{k,\tilde{t}} & \text{in} \quad \Sigma_{\tilde{t}}^{g_k} & \text{since } u \leq u_{\tilde{t}} \text{ in } \Sigma_{\tilde{t}}^{g}. \end{cases}$$

where $\Omega^k := \{x_N > g_k(x')\}$ and $\Sigma_{\tilde{x}}^{g_k} = \{g_k(x') < x_N < \tilde{t}\}$ with

 $g_k(x') = g(x' + (x^k)').$

Step 2 :
$$\tilde{t} := \sup \Lambda = +\infty$$

We can prove

$$\exists g_{\infty} \in C^{0}(\mathbb{R}^{N-1}) \text{ such that } g_{k} \to g_{\infty} \text{ in } C^{0}_{loc}(\mathbb{R}^{N-1}),$$

$$\exists f_{\infty} \in Lip([0,+\infty)) \text{ such that } f_{k} \to f_{\infty} \text{ in } C^{0}_{loc}([0,+\infty)),$$

Step 2 :
$$\tilde{t} := \sup \Lambda = +\infty$$

We can prove

$$\exists g_{\infty} \in C^0(\mathbb{R}^{N-1})$$
 such that $g_k \to g_{\infty}$ in $C^0_{\mathrm{loc}}(\mathbb{R}^{N-1})$, $\exists f_{\infty} \in Lip([0,+\infty))$ such that $f_k \to f_{\infty}$ in $C^0_{\mathrm{loc}}([0,+\infty))$, and let $\mathcal{K} := \overline{B'(0',r) \times (-T,T)}$, $(T>2\tilde{t})$ we can prove that, $\exists v_{\infty} \in C^0(\mathcal{K})$ such that $v_k \to v_{\infty}$ in $C^0_{\mathrm{loc}}(\mathcal{K})$.

Step 2 : $\tilde{t} := \overline{\sup \Lambda} = +\infty$

We can prove

$$\exists g_{\infty} \in C^0(\mathbb{R}^{N-1}) \text{ such that } g_k \to g_{\infty} \text{ in } C^0_{\text{loc}}(\mathbb{R}^{N-1}),$$

$$\exists f_{\infty} \in Lip([0,+\infty)) \text{ such that } f_k \to f_{\infty} \text{ in } C^0_{\text{loc}}([0,+\infty)),$$
 and let $\mathcal{K} := \overline{B'(0',r) \times (-T,T)}, \ (T>2\tilde{t}) \text{ we can prove that,}$
$$\exists v_{\infty} \in C^0(\mathcal{K}) \text{ such that } v_k \to v_{\infty} \text{ in } C^0_{\text{loc}}(\mathcal{K}).$$

$$\begin{cases} -\Delta v_{\infty} = f_{\infty}(v_{\infty}) & \text{in } \mathcal{C}^{g_{\infty}}(0',r,T), \\ v_{\infty} \geq 0 & \text{in } \mathcal{C}^{g_{\infty}}(0',r,T), \\ v_{\infty} = 0 & \text{on } \mathcal{C}^{g_{\infty}}(0',r,T) \cap \{x_N = g_{\infty}\}, \\ v_{\infty}(0',x_{\infty}) = 1, \\ v_{\infty}(0',x_{\infty}) = v_{\infty,\tilde{t}}(0',x_{\infty}) & \text{since } (0',x_{\infty}) \in \Sigma^{g_{\infty}}_{\tilde{t}}. \end{cases}$$
 where $\mathcal{C}^{g_{\infty}}(0',r,T) = B'(0',r) \times (-T,T) \cap \{x_N > g_{\infty}\}$ (see on board)

By applying the maximum principle to $v_{\infty, ilde t}-v_\infty$ in $\Sigma_{ ilde t}^{ extit{g}_\infty}$, we get

$$v_{\infty} = v_{\infty,\tilde{t}} \text{ in } \Sigma_{\tilde{t}}^{g_{\infty}}.$$
 (3)

By applying the maximum principle to v_{∞} in $\mathcal{C}^{g_{\infty}}(0',r,T)$, we get

$$\begin{cases} -\Delta v_{\infty} \geq f_{\infty}(v_{\infty}) - f(0) \geq -L_{f_{\infty}} v_{\infty} & \text{in } \mathcal{C}^{g_{\infty}}(0',r,T), \\ v_{\infty} \geq 0 & \text{in } \mathcal{C}^{g_{\infty}}(0',r,T), \\ v_{\infty}(0',x_{\infty}) = 1, \\ 0 = v_{\infty}(0',g_{\infty}(0')) = v_{\infty}(0',2\tilde{t} - g_{\infty}(0')) & \text{by (3)}. \end{cases}$$