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Semilinear Poisson equation :

—Au="f(u) in Q,
u>0 in Q, (SPE)
u=20 on 01,
where

e f:[0,4+00) — R is a locally or globally Lipschitz-continuous
function.
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Semilinear Poisson equation :

—Au="f(u) in Q,
u>0 in Q, (SPE)
u=20 on 01,
where

e f:[0,4+00) — R is a locally or globally Lipschitz-continuous
function.

e Q c RV is an epigraph bounded from below, i.e
Q:={x=(x,xn) € RN, xy > g(x)},

where g : RV=1 — R is a continuous function and bounded
from below.
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Semilinear Poisson equation :
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Semilinear Poisson equation :

Highlight properties of solutions to the problem (SPE) as :
@ monotonicity (i.e, BBTLIIV > 0),

o Classification results.
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Motivations
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Problems for Functionnals and
Operators. Proceeding of the Int.
Meeting on Recent Methods in
Nonlinear Analysis, 1979, 131-188.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 3/46



Motivations

flu)=u—u® Flu) =

. Lane-Emden equation :
Allen-Cahn equation :

@ Model of phase transition
phenomena,

@ De Giorgi's conjecture
(1978)°

a. E. DE GIoraGI Convergence
Problems for Functionnals and
Operators. Proceeding of the Int.
Meeting on Recent Methods in
Nonlinear Analysis, 1979, 131-188.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 3/46



Motivations

f(u):u—u3 flu) =

. Lane-Emden equation :
Allen-Cahn equation :

@ Stellar structure in

@ Model of phase transition Astrophysics,

phenomena,

@ De Giorgi's conjecture
(1978)°

a. E. DE GIoraGI Convergence
Problems for Functionnals and
Operators. Proceeding of the Int.
Meeting on Recent Methods in
Nonlinear Analysis, 1979, 131-188.
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Motivations

f(u) =uP
flu)=u—u® ()
. Lane-Emden equation :
Allen-Cahn equation : )
@ Stellar structure in

@ Model of phase transition Astrophysics,

phenomena, o
@ A limit problem, after a

® De Giorgi's conjecture blow-up procedure near the

a
(1978) boundary (see
a. E. DE Gioral Convergence GidaS-Spl’UCka)
Problems for Functionnals and _—
Operators. Proceeding of the Int. a. B. GIDas, J. SPRUCK. A Priori
Meeting on Recent Methods in Bounds for Positive Solutions of
Nonlinear Analysis, 1979, 131-188. Nonlinear Elliptic Equations. Commun.

in. PDE. 6, 883-901 (1981).
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@ Monotonicity results when £(0) > 0.
@ Monotonicity results in globally Lipschitz-continuous
epigraphs.
@ Moving plane method and new comparison principles.
@ Monotonicity results in epigraphs belonging to the class G.

© Monotonicity results regardless the sign of £(0).

© Classification results for non-negative solutions to (SPE).
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and new comparison principles

Monotonicity results in epigraphs belonging to the class G.

@ Monotonicity results when £(0) > 0.
@ Monotonicity results in globally Lipschitz-continuous
epigraphs.
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs.

Moving plane method and new comparison principles
Monotonicity results in epigraphs belonging to the class G.

Existing works

Theorem (Dancer (1992))

In the half-space RY = {x = (x’,xy) € RN, xy > 0}, Let

u € C*(RY) be a bounded solution of (SPE). Assume that

f € CL(]0, +c0)), with £(0) > 0 or both £(0) = 0 and f'(0) > 0.
Then u is strictly increasing in the xy—direction, i.e.,

ou
M>OIFIQ
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Existing works

Theorem (Dancer (1992))
In the half-space RY = {x = (x’,xy) € RN, xy > 0}, Let
u € C*(RY) be a bounded solution of (SPE). Assume that

f € CL(]0, +c0)), with £(0) > 0 or both £(0) = 0 and f'(0) > 0.
Then u is strictly increasing in the xy—direction, i.e.,

ou .
M>OIFIQ.

Remark : The need to consider unbounded solutions is well
illustrated by following examples :

e u(x) = axy with f =0.
o u(x) = In(1+ xn) with f(t) = e~2¢.
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and new comparison principles
Monotonicity results in e phs belonging to the class G.

Existing works

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Assume that u € C%@) is a solution of (SPE) where f is a
globally Lipschitz-continuous function with f(0) > 0. Then, the
function u satisfies

: N
M>O IHR+.
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Existing works

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Assume that u € C%@) is a solution of (SPE) where f is a
globally Lipschitz-continuous function with f(0) > 0. Then, the
function u satisfies

u . N
M>O IHR+.

Remark : This Theorem does not applies to function as
f(t) = t — t3 (Allen-Cahn equation) or f(t) = t” (Lane-Emden
equation).
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Existing works

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Assume that u € C%@) is a solution of (SPE) where f is a
globally Lipschitz-continuous function with f(0) > 0. Then, the
function u satisfies

u . N
M>O IHR+.

Remark : This Theorem does not applies to function as

f(t) = t — t3 (Allen-Cahn equation) or f(t) = t” (Lane-Emden
equation).

Question : Does the conclusion of previous Theorem still holds for
unbounded solutions of (SPE) in the case where f is merely locally
Lipschitz-continuous ?
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs.
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Monotonicity results in epigraphs belonging to the class G.

Existing works

Theorem (Farina (2020))

Assume N > 2, Q =R, f € Lipc([0, +00)) with £(0) > 0 and
let u € C?(RY) be a solution to (SPE).

Yt >0, 3C(t) > Osuch that 0 < u < C(t) in RN~ x [0, 1].

Then u is strictly increasing in the xy—direction, i.e,

ou

RN
8XN >0 in
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Existing works

Theorem (Farina (2020))

Assume N > 2, Q =R, f € Lipc([0, +00)) with £(0) > 0 and
let u € C?(RY) be a solution to (SPE).

Yt >0, 3C(t) > Osuch that 0 < u < C(t) in RN~ x [0, 1].

Then u is strictly increasing in the xy—direction, i.e,

ou

RN
8XN >0 in

Questions : What happens when the geometry of Q is more
complex?
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and new compari

n principles
Monotonicity results in e

phs belonging to the class G.

Existing works

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

Assume N > 2, f be an Allen-Cahn type function, €2 be a globally
Lipschitz-continuous epigraph and u € C?(Q) N C°(Q) be a
bounded solution of (SPE).

Then u is monotone, i.e., c%/lv > 0 in Q.
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and n

Monotonicity results in epigraphs belong

Existing works

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

Assume N > 2, f be an Allen-Cahn type function, €2 be a globally
Lipschitz-continuous epigraph and u € C?(Q) N C°(Q) be a
bounded solution of (SPE).

Then u is monotone, i.e., c%/lv > 0 in Q.

y = f(z)

wf

o]

y= (5().’1‘
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Existing works

Theorem (Berestycki, Caffarelli, Nirenberg. (1997))

Assume N > 2, f be an Allen-Cahn type function, €2 be a globally
Lipschitz-continuous epigraph and u € C?(Q) N C°(Q) be a
bounded solution of (SPE).

Then u is monotone, i.e., c%/lv > 0 in Q.

y = f(z)
Example :
3
) Jn J] H T f(u) =u—u.
y= (5().’1‘
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving plane method and new comparison principles
Monotonicity results in epigraphs belonging to the class G.

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Q2 be a globally Lipschitz-continuous epigraph bounded from
below. Assume f € Lip([0,+00)) with f(0) > 0 and let

u € HL_ ()N C°(Q) be a distributional solution to (SPE) such
that VR > 0 3 A(R), B(R) > 0, such that,

u(x) < AeBXl vx e Qn{xy < R}.

Then u is strictly increasing in the xy-direction, i.e.,

ou
—_— in Q.
Bx >0 in

HE (Q) := {u: Q = R, u Lebesgue-mesurable : u € H}(2 N B(0, R)), VR > 0}.
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Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Q2 be a globally Lipschitz-continuous epigraph bounded from
below. Assume f € Lip;,.([0,+00)) with f(0) > 0 and let

u € C%Q)N HL.(Q) be a distributional solution to (SPE) which is
bounded on finite strips, i.e., for any R > 0,

sup  u < +00.
QN{xy<R}

Then u is strictly increasing in the xy-direction, i.e., 687‘7\/ >0 in .
4
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Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Q2 be a globally Lipschitz-continuous epigraph bounded from
below. Assume f € Lip;,.([0,+00)) with f(0) > 0 and let

u € C%Q)N HL.(Q) be a distributional solution to (SPE) which is
bounded on finite strips, i.e., for any R > 0,

sup  u < +00.
QN{xy<R}

Then u is strictly increasing in the xy-direction, i.e., ;7‘7\/ >0 in .
4

Remark : This Theorem recovers the Theorem of A.Farina in the
case of ]Ri’.
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs
Moving plane method and new comparison principles.

Monotonicity results in epigraphs belonging to the class G

@ Monotonicity results when £(0) > 0.

@ Moving plane method and new comparison principles.
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belongir

Moving plane method

Prove that
ANi={t>0: u<upin £, V0<b<t} =R/ .
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs
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Moving plane method

Prove that
ANi={t>0: u<upin £, V0<b<t} =R/ .
238 = {x=(x,xy) €ERN : g(x') < xn < b},

TN

o(z',2b— xy)

ry =b /\

o4 “@\an)

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 13 /46



Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous e
Moving plane method and new comparison principles
Monotonicity results in epigraphs belonging to the clas

Moving plane method

Prove that
ANi={t>0: u<upin £, V0<b<t} =R/ .
238 = {x=(x,xy) €ERN : g(x') < xn < b},

TN

o(z',2b— xy)

ry =b /\

o4 “@\an)

aVVx = (X,ij) - Zi—’ Ub(X) = U(X,,zb — X/\/).
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous e
Moving plane method and new comparison principles
Monotonicity results in epigraphs belong

Step1: AN#0

o If Z‘g is bounded (for instance when 2 is a coercive epigraph)
then we can use maximum principles for domains with small
volumes. !

1. H. BERESTYCKI, L. NIRENBERG. On the method of moving planes and
the sliding method. Bol. Soc. Bras. Mat, Vol 22 No 1, 1-37
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Moving plane method and new comparison principles

Monotonicity results in epigraphs belong

Step1: AN#0

o If Z‘g is bounded (for instance when 2 is a coercive epigraph)

then we can use maximum principles for domains with small

volumes. 1

o If X% is unbounded then - -

1. H. BERESTYCKI, L. NIRENBERG. On the method of moving planes and
the sliding method. Bol. Soc. Bras. Mat, Vol 22 No 1, 1-37
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Step1: AN#0

Theorem (Farina (2020))

Let N > 2 and assume that f € Lip([0, +00)). Let
u,v € C2(RN=1 x [a, b]), with at most polynomial growth at
infinity and satisfying

~Au—f(u) < —Av—~f(v) in RN-1x(ab)
u<v on O(RN=1 x (a, b)),

There exists € = £(f) > 0 such that, for any (a, b) C R with
0 < b—a<e we have

u<v in RN7Lx (a,b).
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Step1: AN#0

Theo (Berestycki-Caffarelli-Nirenberg (1995))

In Q =RN=1 x (a,b), suppose w € W2 (Q) N CO(Q) is a function
satisfying

—Aw + c(x,y)w <0 in Q, with|c| <9,
w<0 in 0%,

and
w < (_‘eu\X\7

for some positive constants v, C, and u. There is a constant 6,
depending only on N,~ and p, such that if

0<b—a<,

then w <0 in .
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Step1: AN#0

Definition (Open sets with good section)

An open set Q C RN has a good section in direction ey if it
satisfies the following conditions :

1- For any R > 0; we have
Cey(R) = (B'(0',R) x Rey) NQ is a bounded subset of RV.

2.
sup LY(SI) < +oo,
x'€RN-1

where 52V := ({x'} x Rey) N 2.

In the remainder, we fix

Sey(Q) := sup LS.

x'€RN-1
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs
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Monotonicity results in epigraphs belonging to the clas:

Step1: AN#0

o | .
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Step1: AN#0

Assume 8, >0, N > 2 and let Q be an open subset of RN with good
section in the direction ey. Let f € Lip(R), a > 0 and
u,v € HE(Q) N C(Q) such that

—Au—f(u) < —Av—f(v) in D(Q),
lu], [v] < a|x|0e7IX] in Q,
u<v on 0f.
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Step1: AN#0

Theorem (B.-Farina-Sciunzi (2025))

Assume 8, >0, N > 2 and let Q be an open subset of RN with good
section in the direction ey. Let f € Lip(R), a > 0 and
u,v € HE(Q) N C(Q) such that

—Au—f(u) < —Av—f(v) in D(Q),
lu], [v] < a|x|0e7IX] in Q

b
u<v on 0f.

Assume that <) satisfies the following property :

sup (/ |XN|26€27|XN\dXN) < +00.
x'€RN—1 53\/

Then, there exists € = €(L¢,~y) > 0 such that
Sey() <e = u<vinQ.
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Moving plane method and new comparison principles.
Monotonicity results in epigraphs belong to the class G

Step 2 : t :=supA\ = +o0
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous e
Moving plane method and new comparison principles
Monotonicity results in epigraphs belonging to the clas

Step 2 : t :=supA\ = +o0

Proposition (f < +00)

For every ¢ € (0, %) there is €(0) > 0 such that

Ve € (0,e(0)) u<ug, in Z?,Z_&
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Monotonicity results in globally Lipschitz-continuous epigraphs
Moving plane method and new comparison principles.
Monotonicity results in epigraphs belonging to the class G.

Monotonicity results when f(0) > 0.

Step 2 : t :=supA\ = +o0

We are led to consider the following problem :

—Av =f(v) in I,
v>0 in K,
v = on oK,
1  where x; €K,
v(x2) =0  where x € K.

where K is a bounded connected set.
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Monotonicity results in epigraphs belonging to the class G.

@ Monotonicity results when £(0) > 0.

@ Monotonicity results in epigraphs belonging to the class G.
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs
Moving plane method and new comparison principles
Monotonicity results in epigraphs belonging to the class G.

In the proof, we are led to consider the sequence

gk(x') = g(x’ + (x*)’) where (gk(0))xen is bounded.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 23 /46



Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs
Moving p method and new comparison principles
Monotonicity results in epigraphs belonging to the class G.

In the proof, we are led to consider the sequence
gk(x') = g(x’ + (x*)’) where (gk(0))xen is bounded.

g globally Lipschitz-continuous in RN~ 4 Ascoli-Arzel4d Theorem
imply

gk — 8- uniformly on every compact sets of RV=1.
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In the proof, we are led to consider the sequence
gk(x') = g(x’ + (x*)’) where (gk(0))xen is bounded.

g globally Lipschitz-continuous in RN~ 4 Ascoli-Arzel4d Theorem
imply

gk — 8- uniformly on every compact sets of RV=1.

Definition (Class G)

Assume N > 2. We say that a continuous function g : RV-1 — R
belongs to the class G, if it satisfies the following compactness
property

(P) Any sequence (gi) of translations of g, which is bounded at
some fixed point of RN=1, admits a subsequence converging
uniformly on every compact sets of RN=1.
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous epigraphs.
Moving pla nethod and new comparison principles
Monotonicity results in epigraphs belonging to the class G.

Examples of functions belonging in the class G.

Example :
o Uniformly continuous functions on RV-1.

e Coercive continuous functions on RV-1,
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Examples of functions belonging in the class G.

Example :
o Uniformly continuous functions on RV-1.
e Coercive continuous functions on RV-1.

o Functions g : R¥N=1 — R such that there exists a continuous
bijection ® : R — R such that o g € G.
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Examples of functions belonging in the class G.

Example :
o Uniformly continuous functions on RV-1.
e Coercive continuous functions on RV-1.

o Functions g : R¥N=1 — R such that there exists a continuous
bijection ® : R — R such that ® o g € G. For instance, if
N = 2, the function

gl(X) = eX7

belongs in the class G and is neither uniformly continuous nor
coercive.
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Monotonicity results in epigraphs belonging to the class G.

Monotonicity results

Theorem (B.-Farina-Sciunzi (2025))

Let N > 2 and let Q be an epigraph bounded from below defined
by a function g € G and satisfying a untiform exzterior cone
condition.

Let u € CO(Q) N HL (Q) be a distributional solution to (SPE).
If

o f € Lip([0,+00)) with f(0) > 0 and u has at most
exponential growth on finite strips.

o f € Lip([0,+00)) with f(0) > 0 and u is bounded on finite
Strips.

Then u is strictly increasing in the xy-direction, i.e.,

ou
—_— in .
Bxy >0 in
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Monotonicity results when f(0) > 0. Monotonicity results in globally Lipschitz-continuous ef
Moving plane method and new comparison principles
Monotonicity results in epigraphs belonging to the class G.

Uniform exterior cone condition
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Monotonicity results regardless the sign of f(0).

© Monotonicity results regardless the sign of £(0).

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 27 /46



Monotonicity results regardless the sign of f(0).

when f(0) <0

Theorem (Cortazar-Elgueta-Garcid-Melian (2016))

Assume N > 2. The only classical solution, possibly unbounded, to
problem
—Au=u—1 n RJ’\F’,
u>0 in RY, (1)
u=20 on ORY,

is the function

u(x) =1—cos(xy) forany x € ]R_’\F’.

Remark : This Theorem was first demonstrated by A. Farina and
B. Sciunzi in dimension 2
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Monotonicity results regardless the sign of f(0).

when f(0) <0

Theorem (Cortazar-Elgueta-Garcid-Melian (2016))

Assume N > 2. The only classical solution, possibly unbounded, to
problem
—Au=u—1 n RJ’\F’,
u>0 in RY, (1)
u=20 on ORY,

is the function

u(x) =1—cos(xy) forany x € ]R_’\F’.

Remark : This Theorem was first demonstrated by A. Farina and
B. Sciunzi in dimension 2

Question : Can we state monotonicity results for solutions of
(SPE) defined in epigraphs even if f(0) <07
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Monotonicity results regardless the sign of f(0).

Existing works

Theorem (Berestycki-Caffarelli-Nirenberg (1993))

Let u e C%@) be a bounded solution to (SPE) in the half-space,
with f a locally Lipschitz-continuous function which satisfies

f(supu) <0.

Then u is strictly increasing in the xy—direction, i.e, 887‘,’\1 >0 in
RY and u only depends on the variable xy and f(sup u) = 0.
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Monotonicity results regardless the sign of f(0).

Existing works

Theorem (Berestycki-Caffarelli-Nirenberg (1993))

Let u e C%@) be a bounded solution to (SPE) in the half-space,
with f a locally Lipschitz-continuous function which satisfies

f(supu) <0.

Then u is strictly increasing in the xy—direction, i.e, 887‘,’\1 >0 in
RY and u only depends on the variable xy and f(sup u) = 0.

If there is a bounded solution u to (SPE) with Q = RY then

f(supu) =0.
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Monotonicity results regardless the sign of f(0).

Existing works

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Let u e C%@) be a solution to (SPE) in R2, with
f € Lip([0,+00)). Then,
ou

. 2
67X2>0 n R+.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 30/ 46



Monotonicity results regardless the sign of f(0).

Existing works

Theorem (Berestycki-Caffarelli-Nirenberg (1995))

Let u e C%@) be a solution to (SPE) in R2, with
f € Lip([0,+00)). Then,

ou _ 5
67X2>0 n R+.

Theorem (Farina-Sciunzi (2014))

Let u e C%@) be a solution to (SPE) in R2, with
f € Lipioc([0,+00)). Then,
ou

: 2
87X2>0 n R+.
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Monotonicity results regardless the sign of f(0).

Existing works

Question : What happens when the geometry of Q is more
complex?
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Monotonicity results regardless the sign of f(0).

Existing works

Question : What happens when the geometry of Q is more
complex?

Theorem (Esteban-Lions (1982))
Let g € CY(RN™1) such that

lim  g(x') = 400,

[x!| =400

and Q be its epigraph. Let f € Lipj,c([0, +00)) and u € C?*(Q) be
a classical solution of (SPE). Then u is strictly increasing in the
xy—direction, i.e,

ou .
M>OIHQ.
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Monotonicity results regardless the sign of f(0).

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Q be a coercive continuous epigraph. Assume
f € Lipjpe([0, +00)) and let u € CO(Q) N HE () be a
distributional solution to (SPE). Then u is strictly increasing in the

xn-direction, i.e., 667‘;\[ >0 in Q.

Remarks :

@ There is no assumption concerning the smoothness of {2 and
the sign of £(0).
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Monotonicity results regardless the sign of f(0).

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Q be a coercive continuous epigraph. Assume
f € Lipjpe([0, +00)) and let u € CO(Q) N HE () be a
distributional solution to (SPE). Then u is strictly increasing in the

xn-direction, i.e., 667‘;\[ >0 in Q.

Remarks :

@ There is no assumption concerning the smoothness of {2 and
the sign of £(0).

@ We recover Theorem of M.J. Esteban and P.L. Lions.
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Monotonicity results regardless the sign of f(0).

Our contributions

Theorem (B.-Farina-Sciunzi)

Let Q be any continuous epigraph bounded from below and let

f € Lipioc([0,00)) be any non-increasing function. Let

u € C°(Q) N HE () be a distributional solution to (SPE) with at
most polynomial growth on finite strips.

Then u is strictly increasing, i.e.,

ou

el = O
aXN>Om

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 33 /46



Monotonicity results regardless the sign of f(0).

The assumption f locally or globally Lipschitz-continuous is sharp.
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Monotonicity results regardless the sign of f(0).

The assumption f locally or globally Lipschitz-continuous is sharp.
The bounded function

Cxn — )4
U(X):{l (xy—1)* if 0<xy<1,

1 if xy>1,

is a classical C? solution to (SPE), where f is given by the
following function

12 if t<0,

f(t)=¢ 12y1—t if 0<t<1,
0 if t>1.
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Classification results for non-negative solutions to (SPE).

© Classification results for non-negative solutions to (SPE).
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Classification results for non-negative solutions to (SPE).

Existing results

Theorem (Farina (2007))

Let 0 < a < 1 and let Q be a C*>“ coercive epigraph. Let
u € C%(Q) be a bounded solution to
—Au=uP in Q,
u>0 in  Q,
u=20 on 0f.

with 1<p<+o0 if N < 11,
l<p<pu(N—-1) ifN>12.
Then,
u=0.
where py (N) := (N_(%i_;;(l\,/vﬁfogv_l is the Joseph-Lundgren
exponent.
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Classification results for non-negative solutions to (SPE).

Existing results

Theorem (Dupaigne-Farina (2022))

Let Q ¢ RN denote a locally Lipschitz-continuous coercive
epigraph and u € C?(Q) N C°(Q) be a bounded solution of

—Au="f(u) in Q,
u>0 in Q, (SPE+)
u=20 on 01,

Assume that f € C1([0,+c0)), f(t) >0 for t > 0 and
2 < N <11. Then f(0) =0 and u = 0.
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Classification results for non-negative solutions to (SPE).

Idea of the proof

Boundedness of u and monotonicity of u imply that

v(x1, - xn-1) = le—imroo u(x’, xn),

exists and is a classical stable? solution to
—Av = f(v)in RV-1,

Finally, the authors used Liouville-type results established in the
whole-space.

2. that is, for every ¢ € C1(RV™1), we have

/ F(v)6" < / VoP.
RNfl ]RNfl
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Classification results for non-negative solutions to (SPE).

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Let Q be an epigraph bounded from below defined by a function
g € G and satisfying a uniform exterior cone condition.
Let u € CO(Q) N HL(Q) be a bounded distributional solution to

—Au="Ff(u) in Q
u>0 in €,
u=20 on 0%,

Assume that f € C1([0,+c0)), f(t) >0 for t > 0 and
2< N <11, then u=0 and f(0) = 0.
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Classification results for non-negative solutions to (SPE).

Theorem (Dupaigne-Farina (2022))

Assume that u € C?(RP) is bounded below and that u is a stable
solution of

—Au=f(u) inRP.

where f : R :— R is locally Lipschitz-continuous and nonnegative.
If1 < p <10, then u must be constant.

A
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Classification results for non-negative solutions to (SPE).

Theorem (Dupaigne-Farina (2022))

Assume that u € C?(RP) is bounded below and that u is a stable
solution of

—Au=f(u) inRP.

where f : R :— R is locally Lipschitz-continuous and nonnegative.
If1 < p <10, then u must be constant.

A

Remarks : This theorem is sharp. Indeed if p > 11, for f(u) = uk,
k sufficiently large, there exists nontrivial positive bounded stable
solution to the Lame-Endem equation.

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 40 / 46



Classification results for non-negative solutions to (SPE).

Our contributions

Theorem (B.-Farina-Sciunzi (2025))

Assume N > 12 and let ) be an epigraph bounded from below

defined by a function g € G and satisfying a uniform exterior cone
condition.

Let u € CO(Q) N Hi(Q) be a bounded distributional solution to

—Au="f(u) in Q,
u>0 in €,
u=20 on 0N,

where f € CY([0,+00)) satisfies f(t) > 0 for t > 0 and
liminf,_ o+ @ > 0, for some s € {0, H)
Then u =0 and f(0) = 0.
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Classification results for non-negative solutions to (SPE).
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Classification results for non-negative solutions to (SPE).

Step 2 : t :=supA\ = +o0

There exists § € (0, ) such that

1
YV k > 1 38[( S (O k) HX S zgt s . U(Xk) > uE-‘rEk(Xk)’
and so

0 < g((x")) <g((x))+d<xy <t-0d.

thus X — Xeo-
We define the sequence

u(x" + (x¥Y, x
0

where @i is the extension of u by 0 outside 2.
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Classification results for non-negative solutions to (SPE).

Step 2 : t :=supA\ = +o0

—Avk = fk(Vk) = 7f(u(xk)vk) in Qk,

u(xk)
v >0 in Qk,
Ve = on 90k,

Nicolas Beuvin, LAMFA Monotonicity results in epigraphs 44 / 46



Classification results for non-negative solutions to (SPE).

Step 2 : t :=supA\ = +o0

—Avi = fi(w) = ) i gk,
v >0 in Qk,
vi =0 on 90k,

vie(0/, xK) = 1,
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Classification results for non-negative solutions to (SPE).

Step 2 : t :=supA\ = +o0

—Avy = fi(vk) = 7“[;(();:2)”) in QK
v >0 in Qk,
vi =0 on 90k,
vi(0', xK) =1,

vk(O’,x,l\‘,) > vk’;+€k(0’,x,’\‘,)

(contradiction assumption),
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Classification results for non-negative solutions to (SPE).

Step 2 : t :=supA\ = +o0

—Avy = fi(vk) = 7“[;(();:2)”) in QK
v >0 in Qk,
vi =0 on 90k,
vi(0', xK) =1,
(0, x5) > Vi g6, (0, xF) (contradiction assumption),
Vik < Ve in X% since u < uzin X£.

where Q := {xy > gr(x')} and & = {gi(x’) < xy < T} with
gr(x") = g(x' + (x1)").
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Classification results for non-negative solutions to (SPE).

Step 2 : t:=supA\ = +o0

We can prove

3g € CO(RN1) such that gx — goo in CL(RVTD),

3fs € Lip([0, +00)) such that i — £ in C2.([0, +00)),
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Classification results for non-negative solutions to (SPE).

Step 2 : t :=supA\ = +o0

We can prove

3g € CO(RN1) such that gx — goo in CL(RVTD),

3fs € Lip([0, +00)) such that i — £ in C2.([0, +00)),
and let K := B/(0/,r) x (=T, T), (T > 2%) we can prove that,

v € CO(K) such that v — vao in C2(K).
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Classification results for non-negative solutions to (SPE).

Step 2 : t:=supA\ = +o0

We can prove

3g € CO(RN1) such that gx — goo in CL(RVTD),

3fs € Lip([0, +00)) such that i — £ in C2.([0, +00)),
and let K := B/(0/,r) x (=T, T), (T > 2%) we can prove that,

v € CO(K) such that v — vao in C2(K).

—AvVeo = foo(Veo) in C&<(0,r, T),
Voo > 0 in C8=(0,r, T),
Voo =0 on C&(0',r, T)N{xy = g},
Voo (0, Xo0) = 1,
Voo (0, Xo0) = Vi (0, Xo0) since (0, xo0) € X§.
where C&=(0',r, T) = B'(0',r) x (=T, T) N {xy > g} (see on

board)
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Classification results for non-negative solutions to (SPE).

Step 2 : t :=supA\ = +o0

By applying the maximum principle to v, 3 — Voo in Z‘%"x’, we get
Voo = Voo 7 IN X5 (3)
By applying the maximum principle to v, in C&=(0',r, T), we get

—AVoo > foo(Voo) — F(0) > — L v in C&=(0,r, T),
Voo > 0 in C&=(0,r, T),
Voo (0, Xo0) = 1,
0 = Voo (0, 850 (0")) = v (0, 2F — g0 (0')) by (3).
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