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Nonlinear Poisson’s equation :

—Au="f(u) in Q
u=>0 in Q (1)
u=20 on 0Q

where
o uc C*(Q)NCYN)
e Q c RN a domain bounded or not
o f:R — R is Lipschitz continuous on R.
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Existing works

Theorem (Gidas,Ni and Nirenberg (79'))

Let u € C?(B(0,1)) N C°(B(0, 1)) which solves (1), then u is
radial ; that is

u(x) = v(r) (r=Ix)

for some strictly decreasing function v : [0,1] — [0, 400).
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Title — Level line of the solution of —Au = u — u® (Freefem ++)
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Existing works

Theorem (J.Serrin, H.Zou (98'))

Let u € C?(RN) which solves (1), moreover we suppose that

e lim u(x)=0
lIx[| =00
e f(0)>0
o fe C,?)’i([O + 00)) and f is decreasing on [0, 0] with 0 < ¢,

then either u =0 or u > 0 and u is radially symmetric about some
point and stricly radially decreasing.
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Maximum principle

Theorem (Hopf's lemma)

Let Q C RN be a domain and u € C3(Q) N CY(Q) and c € L>(Q) such that

—Au+cu>0 in Q
u>0 in Q

Then
@ If there exists xg € Q such that u(xo) = 0 then

Q Ifnot

u>0 in Q

and if yo € 09, u(yo) = 0, and Q2 satisfies the interior ball condition at y, then

ou
— 0.
o (yo) <

where v is the exterior unit normal to Q at yj.




Monotocity of the solution

The Half space

Classification of stable solutions in lower dimensions

© The Half space



Monotocity of the solution
Classification of stable solutions in lower dimensions

The Half space

© The Half space
@ Monotocity of the solution



Monotocity of the solution
Classification of stable solutions in lower dimensions

The Half space

Theorem (A.Farina,2020)

Assume N > 2 and f € CYL(RT) with £(0) > 0 and let
u € C*(RY) be a solution of

—Au=f(u) inRY
u>0 in Rﬂ\r’
u=20 on@RJ’\r’:{xN:O}.

Assume that u is bounded on the slabs RN~ x [0, t] for every
t > 0. Then

: . Ou
u is monotone that is a—(x) >0 V¥x € RY.
XN




Monotocity of the solution
The Half space P . . s e
Classification of stable solutions in lower dimensions

Definition /Notation

Let 0 < A,we define
o P\, = {X GRN,XN :)\}
o ¥, ={x=(x,xy) eRN,0 < xy < A}
o uy(x)=u(x1, - ,2X — xy) the symmetric of u with respect
to Py
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The Half space

Sketch of the proof

We want to prove that

M={t>0,u<uyin Xy VA<t}=(0,+00).
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The Half space

Sketch of the proof

We want to prove that

M={t>0,u<uyin Xy VA<t}=(0,+00).

Indeed, for t > 0, if we define on X, w; = u; — u then w; satisfy

—Awe + Lejoug,We >0 in Xy
Wt 2 O in Zt‘
w; =0 on {x = (X',X/v) € RN»XN = t}-
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The Half space

Sketch of the proof

We want to prove that

M={t>0,u<uyin Xy VA<t}=(0,+00).

Indeed, for t > 0, if we define on X, w; = u; — u then w; satisfy

—Awe + Lejoug,We >0 in Xy
Wt 2 O in Zt‘
w; =0 on {x = (X',X/v) € RN»XN = t}-

By Hopf's Lemma :

vx' e RV 22— (X t) = ——(x/,t) < 0.
X N
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Classification of stable solutions in lower dimensions

Theorem (Comparison principle in unbounded slabs of smalls
width)

Let N>2, M >0,f € C2H(RT) and a < b. Let

loc

u,v € C2(RN-1 x [a, b]) satisfying
—Au—f(u) < —Av —f(v) inRN=1 x (a,b)
lul,|v| < M in RN=1 x (a, b)
u<sv on O(RN=1 x (a, b)).
Then there exist § = 0(f, M) > 0 such that and any

0<b—a<f=u<vinRNx(ab).
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Theorem (Comparison principle in unbounded slabs of smalls
width)

Let N>2, M >0,f € C2H(RT) and a < b. Let

loc

u,v € C2(RN-1 x [a, b]) satisfying
—Au—f(u) < —Av —f(v) inRN=1 x (a,b)
lul,|v| < M in RN=1 x (a, b)
u<sv on O(RN=1 x (a, b)).
Then there exist § = 0(f, M) > 0 such that and any

0<b—a<f=u<vinRNx(ab).

We define

t=sup{t>0,u<uyin Xy VA< t}
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The Half space

Proposition

For every § € (0, %) there exists £(9) > 0 such that

Ve €(0,6(0)) u < ug. in RV x [5,F —4).




The Half space Monotocity of the solution

Classification of stable solutions in lower dimensions

Proposition

For every § € (0, %) there exists £(9) > 0 such that

Ve €(0,6(0)) u < ug. in RV x [5,F —4).

so we have

u<L . on RN [§F—4]
u< . on RN=1x0,0]
u<L . on RNZLx[f—67F+¢]
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@ Classification of stable solutions in lower dimensions
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The Half space Classification of stable solutions in lower dimensions

Stable solution

Definition (Stable solution)

Let f € C}(R) and let Q denote an open set of RY, N > 1. A solution
u € C?3(Q) of
—Au="f(u) inQ (2)

is stable if

/ F(u)dx < / IVal2dk, ¥ ¢ e CHQ).
Q Q
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Stable solution

Definition (Stable solution)

Let f € C}(R) and let Q denote an open set of RY, N > 1. A solution
u € C?3(Q) of
—Au="f(u) inQ (2)

is stable if

/ F(u)ddx < / IVal2dk, ¥ ¢ e CHQ).
Q Q

Proposition

Let u € C?(Q) solution of (2) such that,

8877\’>0 in Q

Then u is stable.
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The Half space Classification of stable solutions in lower dimensions

Stable solution

Theorem (L.Dupaigne and A.Farina (2020))

Let u e CZ(M) be a bounded solution of

—Au=f(u) in RY
u>0 in RY (3)
u=20 on ORN.

Assume that f € C*([0,+0oc)) and non negative.
If2 < N < 11 then u must be one-dimensional and monotone ( ie
u=u(xy) and u/dxy > 0 in RY).
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The Half space

Stable solution

Theorem (L.Dupaigne and A.Farina (2020))

Assume that u € C?(RN) is bounded below and that u is a stable
solution of
—Au=f(u) inRV,

where f € CY([0,+o0)) is locally lipschitz and non negative.
If N < 10 then u must be constant.

Theorem (H.Berestycki, L.A.Caffarelli and L.Nirenberg (93"))

Let u e C?(RY) be a bounded solution of (3). If

then

u is a function of xy.
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Coercive epigraph
The epigraph ERizieel

Coercive epigraph

Definition (Coercive epigraph)
A domain Q is a coercive epigraph if there exists g € CO(RN~1, R)
such that Q = {x = (¥, xy) € RN, xy > g(x')} and

lim  g(x') = +oo.

[|x”[|]—-+o0
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The epigraph ERizieel

Coercive epigraph

Definition (Coercive epigraph)

A domain Q is a coercive epigraph if there exists g € CO(RN~1, R)
such that Q = {x = (¥, xy) € RN, xy > g(x')} and
lim  g(x') = +oo.

[|x”[|]—-+o0

.

Theorem (M.J.Esteban and P.L.Lions (82"))
Let Q2 denote a coercive epigraph. If u > 0 solves (1) then

ou

— in Q.
Bxn >0 in

\,
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Coercive epigraph

The epigraph Epigraph

Epigraph

Let N > 2, g € UC(RN=1) such that g is bounded below . We
consider Q the epigraph of g. Moreover, let f € C%1([0, +0c0))
such that £(0) > 0. Let u € UC(Q) N C%(Q) N HL(Q) a function
satisfying
—Au="f(u) in Q
u=20 on 02
u=0 in €

then u is monotone, that is

ou
M(X) >0 VxeQ.
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The epigraph Epigraph

Definition /Notation

Let 0 < a< band g € CO(RN-1), we introduce
o P,={xcRN xy=b}
o % ={x=(x,xn) € RN g(x') < xy < b}
o T8, ={x=(x,xn) e RY, g(x') + a < xy < b}
® up(x) = u(xy, -+ ,2b — xy) the symmetric of u with respect
to Pyp.
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The epigraph Epigraph

Definition /Notation

Let 0 < a< band g € CO(RN-1), we introduce
o P,={xcRN xy=b}
o % ={x=(x,xn) € RN g(x') < xy < b}
o T8, ={x=(x,xn) e RY, g(x') + a < xy < b}
® up(x) = u(xy, -+ ,2b — xy) the symmetric of u with respect
to Pyp.

We define
M:={t>0,u<uyin X§ V<t}
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The epigraph Epigraph

Comparison principle

Let N > 2 and Q an open set included in a strip
{x=(x",xn) € RN, a < xy < b} witha < b. Let f € C**(R), v >0
and u,v € HL (Q) N C°(Q) satisfy

—Au—f(u) < =Av—1f(v) in D(Q)
Jul,Jv] < el in Q
u<v on O0fN.
then there exist e = e(L¢) > 0 such that

0<L(Q)<e = u<vinQ

where L(Q) = D;bj_pl(ﬁl(({x’} x R) N Q)).




Coercive epigraph

The epigraph Epigraph

Comparison principle

Let N > 2 and Q an open set included in a strip
{x=(x",xn) € RN, a < xy < b} witha < b. Let f € C**(R), v >0
and u,v € HL (Q) N C°(Q) satisfy

—Au—f(u) < =Av—1f(v) in D(Q)
Jul,Jv] < el in Q
u<v on O0fN.
then there exist e = e(L¢) > 0 such that

0<L(Q)<e = u<vinQ

where L(Q) = D;bj_pl(ﬁl(({x’} x R) N Q)).

We define
t=sup{t>0,u< uyinX§ VA<t}



Coercive epigraph

The epigraph Epigraph

Proposition

For every ¢ € (0, %) there exists (d) > 0 such that

Ve €(0,6(0)) u< gy in X555

so we have

u<uz, on Z?,Efa

. g g
u<ug,. on ZE+5\25,§—6'
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