Non linear elliptic problems in unbounded domains

Nicolas Beuvin

PHD's seminar

11 october 2023

Introduction
Maximum principle
The Half space
The epigraph
Références

- Introduction
- 2 Maximum principle
- The Half space
 - Monotocity of the solution
 - Classification of stable solutions in lower dimensions
- The epigraph
 - Coercive epigraph
 - Epigraph

Nonlinear Poisson's equation:

$$\begin{cases}
-\Delta u = f(u) & \text{in } \Omega \\
u \geqslant 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases} \tag{1}$$

where

- $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$
- $\bullet \ \Omega \subset \mathbb{R}^{\textit{N}}$ a domain bounded or not
- $f: \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous on \mathbb{R} .

Introduction
Maximum principle
The Half space
The epigraph
Références

Aims

- Monotocity
- Radial symmetry
- One-dimensional symmetry

Existing works

Theorem (Gidas, Ni and Nirenberg (79'))

Let $u \in C^2(B(0,1)) \cap C^0(\overline{B(0,1)})$ which solves (1), then u is radial: that is

$$u(x) = v(r) \ (r = |x|)$$

for some strictly decreasing function $v:[0,1] \to [0,+\infty)$.

Title – Level line of the solution of $-\Delta u = u - u^3$ (Freefem ++)

Existing works

Theorem (J.Serrin, H.Zou (98'))

Let $u \in C^2(\mathbb{R}^N)$ which solves (1), moreover we suppose that

- $f(0) \ge 0$
- $f \in C^{0,1}_{loc}([0+\infty))$ and f is decreasing on $[0,\delta]$ with $0<\delta$,

then either $u \equiv 0$ or u > 0 and u is radially symmetric about some point and stricly radially decreasing.

- Introduction
- 2 Maximum principle
- The Half space
 - Monotocity of the solution
 - Classification of stable solutions in lower dimensions
- The epigraph
 - Coercive epigraph
 - Epigraph

Theorem (Hopf's lemma)

Let $\Omega \subset \mathbb{R}^N$ be a domain and $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ and $c \in L^\infty(\Omega)$ such that

$$\left\{ \begin{array}{ccc} -\Delta u + cu \geqslant 0 & \text{in} & \Omega \\ u \geqslant 0 & \text{in} & \Omega \end{array} \right.$$

Then

1 If there exists $x_0 \in \Omega$ such that $u(x_0) = 0$ then

$$u\equiv 0$$
 in Ω .

Ifnot

$$u>0$$
 in $\Omega,$

and if $y_0 \in \partial \Omega$, $u(y_0) = 0$, and Ω satisfies the interior ball condition at y_0 then

$$\frac{\partial u}{\partial \nu}(y_0) < 0.$$

where ν is the exterior unit normal to Ω at v_0 .

- Introduction
- 2 Maximum principle
- The Half space
 - Monotocity of the solution
 - Classification of stable solutions in lower dimensions
- 4 The epigraph
 - Coercive epigraph
 - Epigraph

- Introduction
- 2 Maximum principle
- The Half space
 - Monotocity of the solution
 - Classification of stable solutions in lower dimensions
- 4 The epigraph
 - Coercive epigraph
 - Epigraph

Theorem (A.Farina, 2020)

Assume $N \geqslant 2$ and $f \in C^{0,1}_{loc}(\mathbb{R}^+)$ with $f(0) \geqslant 0$ and let $u \in C^2(\overline{\mathbb{R}^N_+})$ be a solution of

$$\begin{cases} -\Delta u = f(u) & \text{in } \mathbb{R}_+^N \\ u > 0 & \text{in } \mathbb{R}_+^N \\ u = 0 & \text{on } \partial \mathbb{R}_+^N = \{x_N = 0\}. \end{cases}$$

Assume that u is bounded on the slabs $\mathbb{R}^{N-1} \times [0,t]$ for every t > 0. Then

u is monotone that is
$$\frac{\partial u}{\partial x_N}(x) > 0 \ \forall x \in \mathbb{R}_+^N$$
.

Definition/Notation

Let $0 < \lambda$, we define

$$P_{\lambda} = \{ x \in \mathbb{R}^{N}, x_{N} = \lambda \}$$

•
$$\Sigma_{\lambda} = \{x = (x', x_N) \in \mathbb{R}^N, 0 < x_N < \lambda\}$$

• $u_{\lambda}(x) = u(x_1, \dots, 2\lambda - x_N)$ the symmetric of u with respect to P_{λ}

Sketch of the proof

We want to prove that

$$\Gamma := \{t > 0, u \leqslant u_{\lambda} \text{ in } \Sigma_{\lambda} \ \forall \lambda \leqslant t\} = (0, +\infty).$$

Sketch of the proof

We want to prove that

$$\Gamma := \{t > 0, u \leqslant u_{\lambda} \text{ in } \Sigma_{\lambda} \ \forall \, \lambda \leqslant t\} = (0, +\infty).$$

Indeed, for t>0, if we define on Σ_t , $w_t=u_t-u$ then w_t satisfy

$$\begin{cases} -\Delta w_t + L_{f,[0,\|u\|_{\Sigma_{2t}}]} w_t \geqslant 0 & \text{in} \quad \Sigma_t \\ w_t \geqslant 0 & \text{in} \quad \Sigma_t \\ w_t = 0 & \text{on} \quad \{x = (x', x_N) \in \mathbb{R}^N, x_N = t\}. \end{cases}$$

Sketch of the proof

We want to prove that

$$\Gamma := \{t > 0, u \leqslant u_{\lambda} \text{ in } \Sigma_{\lambda} \ \forall \ \lambda \leqslant t\} = (0, +\infty).$$

Indeed, for t>0, if we define on Σ_t , $w_t=u_t-u$ then w_t satisfy

$$\begin{cases} -\Delta w_t + L_{f,[0,\|u\|_{\Sigma_{2t}}]} w_t \geqslant 0 & \text{in} \quad \Sigma_t \\ w_t \geqslant 0 & \text{in} \quad \Sigma_t \\ w_t = 0 & \text{on} \quad \{x = (x', x_N) \in \mathbb{R}^N, x_N = t\}. \end{cases}$$

By Hopf's Lemma:

$$\forall x' \in \mathbb{R}^{N-1} \quad -2 \frac{\partial u}{\partial x_N}(x',t) = \frac{\partial w_t}{\partial x_N}(x',t) < 0.$$

Theorem (Comparison principle in unbounded slabs of smalls width)

Let
$$N \geqslant 2$$
, $M > 0$, $f \in C^{0,1}_{loc}(\mathbb{R}^+)$ and $a < b$. Let $u, v \in C^2(\mathbb{R}^{N-1} \times [a, b])$ satisfying

$$\left\{ \begin{array}{ll} -\Delta u - f(u) \leqslant -\Delta v - f(v) & \text{in } \mathbb{R}^{N-1} \times (a,b) \\ |u|,|v| < M & \text{in } \mathbb{R}^{N-1} \times (a,b) \\ u \leqslant v & \text{on } \partial(\mathbb{R}^{N-1} \times (a,b)). \end{array} \right.$$

Then there exist $\theta = \theta(f, M) > 0$ such that and any

$$0 < b - a < \theta \Rightarrow u \leqslant v \text{ in } \mathbb{R}^{N-1} \times (a, b).$$

Theorem (Comparison principle in unbounded slabs of smalls width)

Let
$$N \geqslant 2$$
, $M > 0$, $f \in C^{0,1}_{loc}(\mathbb{R}^+)$ and $a < b$. Let $u, v \in C^2(\mathbb{R}^{N-1} \times [a, b])$ satisfying

$$\left\{ \begin{array}{ll} -\Delta u - f(u) \leqslant -\Delta v - f(v) & \text{in } \mathbb{R}^{N-1} \times (a,b) \\ |u|,|v| < M & \text{in } \mathbb{R}^{N-1} \times (a,b) \\ u \leqslant v & \text{on } \partial(\mathbb{R}^{N-1} \times (a,b)). \end{array} \right.$$

Then there exist $\theta = \theta(f, M) > 0$ such that and any

$$0 < b - a < \theta \Rightarrow u \leqslant v \text{ in } \mathbb{R}^{N-1} \times (a, b).$$

We define

$$\tilde{t} = \sup\{t > 0, u \leqslant u_{\lambda} \text{ in } \Sigma_{\lambda} \ \forall \lambda \leqslant t\}.$$

if
$$\tilde{t}<+\infty$$

Proposition

For every $\delta \in (0, \frac{\tilde{t}}{2})$, there exists $\varepsilon(\delta) > 0$ such that

$$\forall \varepsilon \in (0, \varepsilon(\delta)) \ u \leqslant u_{\tilde{t}+\varepsilon} \ \text{in } \mathbb{R}^{N-1} \times [\delta, \tilde{t}-\delta].$$

Proposition

For every $\delta \in (0, \frac{\tilde{t}}{2})$, there exists $\varepsilon(\delta) > 0$ such that

$$\forall \varepsilon \in (0, \varepsilon(\delta)) \ u \leqslant u_{\tilde{t}+\varepsilon} \ \text{in } \mathbb{R}^{N-1} \times [\delta, \tilde{t}-\delta].$$

so we have

$$\left\{ \begin{array}{ll} u \leqslant u_{\tilde{t}+\varepsilon} & \text{on} \quad \mathbb{R}^{N-1} \times [\delta, \tilde{t}-\delta] \\ u \leqslant u_{\tilde{t}+\varepsilon} & \text{on} \quad \mathbb{R}^{N-1} \times [0, \delta] \\ u \leqslant u_{\tilde{t}+\varepsilon} & \text{on} \quad \mathbb{R}^{N-1} \times [\tilde{t}-\delta, \tilde{t}+\varepsilon]. \end{array} \right.$$

- Introduction
- 2 Maximum principle
- The Half space
 - Monotocity of the solution
 - Classification of stable solutions in lower dimensions
- 4 The epigraph
 - Coercive epigraph
 - Epigraph

Definition (Stable solution)

Let $f \in C^1(\mathbb{R})$ and let Ω denote an open set of \mathbb{R}^N , $N \geqslant 1$. A solution $u \in C^2(\Omega)$ of

$$-\Delta u = f(u) \quad \text{in } \Omega \tag{2}$$

is stable if

$$\int_{\Omega} f'(u)\phi^2 dx \leqslant \int_{\Omega} \|\nabla \phi\|^2 dx, \quad \forall \ \phi \in C_c^1(\Omega).$$

Definition (Stable solution)

Let $f \in C^1(\mathbb{R})$ and let Ω denote an open set of \mathbb{R}^N , $N \geqslant 1$. A solution $u \in C^2(\Omega)$ of

$$-\Delta u = f(u) \quad \text{in } \Omega \tag{2}$$

is stable if

$$\int_{\Omega} f'(u)\phi^2 dx \leqslant \int_{\Omega} \|\nabla \phi\|^2 dx, \quad \forall \ \phi \in C_c^1(\Omega).$$

Proposition

Let $u \in C^2(\Omega)$ solution of (2) such that,

$$\frac{\partial u}{\partial x_N} > 0$$
 in Ω

Then u is stable.

Theorem (L.Dupaigne and A.Farina (2020))

Let $u \in C^2(\overline{\mathbb{R}^N_+})$ be a bounded solution of

$$\begin{cases}
-\Delta u = f(u) & \text{in } \mathbb{R}_{+}^{N} \\
u > 0 & \text{in } \mathbb{R}_{+}^{N} \\
u = 0 & \text{on } \partial \mathbb{R}_{+}^{N}.
\end{cases} \tag{3}$$

Assume that $f \in C^1([0,+\infty))$ and non negative. If $2 \le N \le 11$ then u must be one-dimensional and monotone (ie $u = u(x_N)$ and $\partial u/\partial x_N > 0$ in \mathbb{R}^N_+).

Theorem (L.Dupaigne and A.Farina (2020))

Assume that $u \in C^2(\mathbb{R}^N)$ is bounded below and that u is a stable solution of

$$-\Delta u = f(u)$$
 in \mathbb{R}^N ,

where $f \in C^1([0, +\infty))$ is locally lipschitz and non negative. If $N \le 10$ then u must be constant.

Theorem (H.Berestycki, L.A.Caffarelli and L.Nirenberg (93'))

Let $u \in C^2(\overline{\mathbb{R}^N_+})$ be a bounded solution of (3). If

$$f(\sup_{\mathbb{R}^N_+}(u)) \leqslant 0$$

then

u is a function of x_N .

- Introduction
- 2 Maximum principle
- The Half space
 - Monotocity of the solution
 - Classification of stable solutions in lower dimensions
- 4 The epigraph
 - Coercive epigraph
 - Epigraph

- Introduction
- 2 Maximum principle
- The Half space
 - Monotocity of the solution
 - Classification of stable solutions in lower dimensions
- 4 The epigraph
 - Coercive epigraph
 - Epigraph

Coercive epigraph

Definition (Coercive epigraph)

A domain Ω is a coercive epigraph if there exists $g \in C^0(\mathbb{R}^{N-1},\mathbb{R})$ such that $\Omega = \{x = (x', x_N) \in \mathbb{R}^N, x_N > g(x')\}$ and $\lim_{\|x'\| \to +\infty} g(x') = +\infty$.

Coercive epigraph

Definition (Coercive epigraph)

A domain Ω is a coercive epigraph if there exists $g \in C^0(\mathbb{R}^{N-1}, \mathbb{R})$ such that $\Omega = \{x = (x', x_N) \in \mathbb{R}^N, x_N > g(x')\}$ and $\lim_{\|x'\| \to +\infty} g(x') = +\infty$.

Theorem (M.J.Esteban and P.L.Lions (82'))

Let Ω denote a coercive epigraph. If u > 0 solves (1) then

$$\frac{\partial u}{\partial x_N} > 0$$
 in Ω .

- Introduction
- 2 Maximum principle
- The Half space
 - Monotocity of the solution
 - Classification of stable solutions in lower dimensions
- 4 The epigraph
 - Coercive epigraph
 - Epigraph

Epigraph

Theorem

Let $N \geqslant 2$, $g \in UC(\mathbb{R}^{N-1})$ such that g is bounded below . We consider Ω the epigraph of g. Moreover, let $f \in C^{0,1}([0,+\infty))$ such that f(0) > 0. Let $u \in UC(\overline{\Omega}) \cap C^2(\Omega) \cap H^1_{loc}(\overline{\Omega})$ a function satisfying

$$\left\{ \begin{array}{lll} -\Delta u = f(u) & \text{in} & \Omega \\ u = 0 & \text{on} & \partial \Omega \\ u \geqslant 0 & \text{in} & \Omega \end{array} \right.$$

then u is monotone, that is

$$\frac{\partial u}{\partial x_N}(x) > 0 \quad \forall x \in \Omega.$$

Definition/Notation

Let 0 < a < b and $g \in C^0(\mathbb{R}^{N-1})$, we introduce

- $P_b = \{x \in \mathbb{R}^N, x_N = b\}$
- $\Sigma_b^g = \{x = (x', x_N) \in \mathbb{R}^N, g(x') < x_N < b\}$
- $\Sigma_{a,b}^g = \{x = (x', x_N) \in \mathbb{R}^N, g(x') + a < x_N < b\}$
- $u_b(x) = u(x_1, \dots, 2b x_N)$ the symmetric of u with respect to P_b .

Definition/Notation

Let 0 < a < b and $g \in C^0(\mathbb{R}^{N-1})$, we introduce

- $P_b = \{x \in \mathbb{R}^N, x_N = b\}$
- $\Sigma_b^g = \{x = (x', x_N) \in \mathbb{R}^N, g(x') < x_N < b\}$
- $\Sigma_{a,b}^g = \{x = (x', x_N) \in \mathbb{R}^N, g(x') + a < x_N < b\}$
- $u_b(x) = u(x_1, \dots, 2b x_N)$ the symmetric of u with respect to P_b .

We define

$$\Gamma := \{t > 0, u \leqslant u_{\lambda} \text{ in } \Sigma_{\lambda}^{g} \ \forall \ \lambda \leqslant t\}.$$

Comparison principle

Theorem

Let $N \geqslant 2$ and Ω an open set included in a strip

$$\{x = (x', x_N) \in \mathbb{R}^N, a < x_N < b\}$$
 with $a < b$. Let $f \in C^{0,1}(\mathbb{R}), \gamma > 0$ and $u, v \in H^1_{loc}(\Omega) \cap C^0(\overline{\Omega})$ satisfy

$$\left\{ \begin{array}{ccc} -\Delta u - f(u) \leqslant -\Delta v - f(v) & \text{in} & D'(\Omega) \\ |u|, |v| \leqslant \gamma e^{||x||} & \text{in} & \Omega \\ u \leqslant v & \text{on} & \partial \Omega. \end{array} \right.$$

then there exist $\varepsilon = \varepsilon(L_f) > 0$ such that

$$0 < L(\Omega) < \varepsilon \implies u \leqslant v \text{ in } \Omega$$

where
$$L(\Omega) = \sup_{\mathbb{R}^{N-1}} (\mathcal{L}^1((\{x'\} \times \mathbb{R}) \cap \Omega)).$$

Comparison principle

Theorem

Let $N \geqslant 2$ and Ω an open set included in a strip

 $\{x=(x',x_N)\in\mathbb{R}^N, a< x_N< b\}$ with a< b. Let $f\in C^{0,1}(\mathbb{R}), \ \gamma>0$ and $u,v\in H^1_{loc}(\Omega)\cap C^0(\overline{\Omega})$ satisfy

$$\left\{ \begin{array}{ccc} -\Delta u - f(u) \leqslant -\Delta v - f(v) & \text{in} & D'(\Omega) \\ |u|, |v| \leqslant \gamma e^{||x||} & \text{in} & \Omega \\ u \leqslant v & \text{on} & \partial \Omega. \end{array} \right.$$

then there exist $\varepsilon = \varepsilon(L_f) > 0$ such that

$$0 < L(\Omega) < \varepsilon \implies u \leqslant v \text{ in } \Omega$$

where
$$L(\Omega) = \sup_{\mathbb{R}^{N-1}} (\mathcal{L}^1((\{x'\} \times \mathbb{R}) \cap \Omega)).$$

We define

$$\tilde{t} = \sup\{t > 0, u \leq u_{\lambda} \text{ in } \Sigma_{\lambda}^{g} \ \forall \lambda \leq t\}.$$

Proposition

For every $\delta \in (0, \frac{\tilde{t}}{2})$, there exists $\varepsilon(\delta) > 0$ such that

$$\forall \, \varepsilon \in (0, \varepsilon(\delta)) \ u \leqslant u_{\tilde{t}+\varepsilon} \ \text{in} \ \Sigma_{\delta, \tilde{t}-\delta}^{g}.$$

so we have

$$\left\{ \begin{array}{ll} u \leqslant u_{\tilde{t}+\varepsilon} & \text{on} \quad \Sigma_{\delta,\tilde{t}-\delta}^g \\ u \leqslant u_{\tilde{t}+\varepsilon} & \text{on} \quad \Sigma_{\tilde{t}+\varepsilon}^g \backslash \Sigma_{\delta,\tilde{t}-\delta}^g. \end{array} \right.$$

- Introduction
- 2 Maximum principle
- The Half space
 - Monotocity of the solution
 - Classification of stable solutions in lower dimensions
- The epigraph
 - Coercive epigraph
 - Epigraph

- BERESTYCKI, H., CAFFARELLI, L. A. & NIRENBERG, L. Monotonicity for elliptic equations in unbounded Lipschitz domains. en. Communications on Pure and Applied Mathematics 50, 1089-1111. ISSN: 1097-0312. (2023) (1997).
- BERESTYCKI, H., CAFFARELLI, L. A. & NIRENBERG, L. English. in Boundary value problems for partial differential equations and applications. Dedicated to Enrico Magenes on the occasion of his 70th birthday 27-42 (Masson, Paris, 1993). ISBN: 978-2-225-84334-1.
- 3. DUPAIGNE, L. Stable Solutions of Elliptic Partial Differential Equations. ISBN: 978-0-429-15034-0 (Chapman et Hall/CRC, New York, mai 2011).
- ESTEBAN, M. J. & LIONS, P. L. Existence and non-existence results for semilinear elliptic problems in unbounded domains. en. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 93, 1-14. ISSN: 0308-2105, 1473-7124. https://www.cambridge.org/core/product/identifier/S0308210500031607/ type/journal_article (2023) (1982).
- 5. EVANS, L. C. Partial differential equations. en (1988).
- FARINA, A. Some results about semilinear elliptic problems on half-spaces. en. *Mathematics in Engineering* 2, 709-721. ISSN: 2640-3501. http://www.aimspress.com/article/10.3934/mine.2020033 (2023) (2020).
- GILBARG, D. & TRUDINGER, N. S. Elliptic Partial Differential Equations of Second Order. ISBN: 978-3-540-41160-4 (Springer Science & Business Media, jan. 2001).

Introduction Maximum principle The Half space The epigraph Références

 SERRIN, J. & ZOU, H. Symmetry of Ground States of Quasilinear Elliptic Equations. en. Archive for Rational Mechanics and Analysis 148, 265-290. ISSN: 1432-0673. https://doi.org/10.1007/s002050050162 (2023) (sept. 1999).