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Introduction

Serrin’s overdetermined problem :

—Au="f(u) in Q

u=0 in
u=20 on 09, (1)
‘g—; =c on O0f2.
where
e c € R\{0}

e uc C?(Q) is a classical solution.

o Q C RV is an epigraph, i.e
{x= (', xn) € RN, xy > g(x)},

where g : RN~ — R is a differentiable function.
@ f: R — R is a differentiable function on R.



Introduction

Historic

A lot of applications in Physics : fluid mechanics,...
Example : The Soap bubble problem

—Au=1 in K,
u>=0 in  Q,
u=0 on 09, (2)
g—; =c on 0.

where
@ u represent a fluid inside a soap bubble.
@ c is a constant related to the viscosity and density of w.

e is a soap bubble.
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Historic

J. Serrin proved in 1971 the following result :

Theorem (Soap bubble Theorem)

Let Q be a bounded domain whose boundary is of class C. If
there exists a function u € C?(Q) satisfying (1) then Q must be a
ball and u is radially symmetric about its center.




Introduction

Historic

J. Serrin proved in 1971 the following result :

Theorem (Soap bubble Theorem)

Let Q be a bounded domain whose boundary is of class C. If
there exists a function u € C?(Q) satisfying (1) then Q must be a
ball and u is radially symmetric about its center.

Question : What is the situation when Q is an unbounded domain?
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Historic

In 1997, H. Berestycki, L. Caffarelli and L. Nirenberg conjectured
that

If Q is a smooth domain with Q¢ connected and that there is a
bounded positive solution of (1) for some Lipschitz function f
then Q is either a half space, or a cylinder Q = By x R"~k, where
By is k-dimensional Euclidean ball, or the complement of a ball or
a cylinder.
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Historic

In 1997, H. Berestycki, L. Caffarelli and L. Nirenberg conjectured
that

If Q is a smooth domain with Q¢ connected and that there is a

bounded positive solution of (1) for some Lipschitz function f
then Q is either a half space, or a cylinder Q = By x R"~k, where
By is k-dimensional Euclidean ball, or the complement of a ball or
a cylinder.

In our case, the conjecture becomes

If Q is a smooth enough epigraph and that there is a bounded
positive solution of (1) for some Lipschitz function f then Q is a
half space.




Case f(0) > 0

Monotonicity result in an epigraph e £(0) < 0

h of the proof : The moving plane

© Monotonicity result in an epigraph



Case f(0) > 0

Monotonicity result in an epigraph Case f(0) < 0

Sketch of the proof : The moving plane

© Monotonicity result in an epigraph
o Case f(0) >0



Monotonicity result in an epigraph Case 7(0) > 8

Case f(0) <
Sketch of the proof : The moving plane

Theorem (case f(0) > 0)

Let Q be a uniformly continuous epigraph bounded from below and
satisfying a uniform exterior cone condition on 0S). Assume

f e C2L([0, +00)) with £(0) > 0 and let u € C3(Q) N C(Q) be a
classical solution of

—Au="f(u) in Q
u>0 in Q,
u=0 on 0.

Suppose that Vu € L*°(R2), then u is strictly increasing in the
xy—direction, i.e.
ou
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Monotonicity result in an epigraph

Definition

We say that Q satisfy a uniform exterior cone condition on 92 if
for any xg € 0N there exists a finite right circular cone V,, with
vertex xp such that

Qn VXO = {X()}7

and the cones V,; are all congruent to some fixed cone V.
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Monotonicity result in an epigraph

Definition

Examples :

e If Q is a Lipschitz epigraph (i.e g is a Lipschitz continuous
function) then  satisfy a uniform exterior cone condition on
0R2.
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Monotonicity result in an epigraph

Definition

Examples :

e If Q is a Lipschitz epigraph (i.e g is a Lipschitz continuous
function) then  satisfy a uniform exterior cone condition on

o0Q.
°
Q
2 x €] — o0, 2],
Vi—(x+2)2 x¢€]-2,0],
g(X) = 4— (X - 2)2 X €]0a2]7
2 x €]2,6],

' \ x —4 x €]6,4o0].
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Monotonicity result in an epigraph

We don’t necessarily need that the epigraph be uniformly
continuous. Indeed, if g satisfy the following property then the
Theorem "case f(0) > 0" holds true.

Proposition

There exists an injection ¢ : g(RN~1) — R continuous such that
¢ o g is uniformly continuous on RN~

Example :

exp RV-1 5 R

x'=(x1, ,xn_1) — €.
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Monotonicity result in an epigraph

Theorem (case f(0) < 0)

Let N > 2 and Q) be a continuous epigraph bounded from below
such that g € €V¢(RN=1). Let f € CY(R) such that f(0) < 0 and
u € C%(Q) be a bounded solution to

—Au="f(u) in Q
u>0 in  Q,
u=20 on 0,
‘g—; =C on 0.

Then u is strictly increasing in the xy-direction, i.e.

ou

— in Q.
Bxy >0 in
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Monotonicity result in an epigraph

Definition /Remark

Let X C RN an open set and a € (0,1]. We denote by ¢%%(X) the set of
functions h: X — R in such a way that h € C1(X) and Vh € C%%(X),
that is

h(x) — Vh
[Vhlcoa(xy =sup [Vh(x)[ +  sup [Vh(x) = Vh(y) < 400

xeX X,y €X,xFy |X _y|a
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Definition /Remark

Definition

Let X C RN an open set and « € (0,1]. We denote by ¢5%(X) the set of
functions h: X — R in such a way that h € C1(X) and Vh € C%%(X),
that is

[Vh(x) = Vh(y)| _

+oo
Ix — y|*

VAl co.e(x) = sup [Vh(x)| +  sup
xeX X,y €X,x#y

Remark :

Let Q C RN be an epigraph with g € C'(RV=1). Let f € C°(R) and
u € C?(Q)N CYQ) be a bounded solution to (1). Then

Vu is bounded in Q,

If £(0) > 0 then the Theorem "case (0) < 0" is true since g is Lipschitz
continuous, bounded from below and Vu is bounded.



Case f(0) > 0

Monotonicity result in an epigraph Case (0) < 0

Sketch of the proof : The moving plane

© Monotonicity result in an epigraph

@ Sketch of the proof : The moving plane



Case f(0) > 0
Case f(0) < 0
Sketch of the proof : The moving plane

Monotonicity result in an epigraph

Definition

Let 0 < a < b, we define
0 Y8 = {x=(x,xn) € RN g(x') < xy < a},
o 38, ={x=(x,xn) eRY, g(x') +a <xn < b},

Vx € X8 uy(x) = u(xa, -+ ,2a — xpn).



Case f(0) > 0
Case f(0) < 0
Sketch of the proof : The moving plane

Monotonicity result in an epigraph

Sketch of the proof

We want to prove that

F={t>0,u<uyinX§ VA< t}=(0,+0c0).
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Sketch of the proof

We want to prove that

F={t>0,u<uyinX§ VA< t}=(0,+0c0).

Indeed, for t > 0, if we define on £, w; = u; — u then w; satisfy

—Aw; + Lf,[O’”qug Wt >0 in Z%,
2t

Wt > 0 in Z%,
we =0 on {x=(x,xn) € Q,xy =t}



Case f(0) > 0
Case f(0) < 0
Sketch of the proof : The moving plane

Monotonicity result in an epigraph

Sketch of the proof

We want to prove that

F={t>0,u<uyinX§ VA< t}=(0,+0c0).

Indeed, for t > 0, if we define on £, w; = u; — u then w; satisfy

—Aw; + Lf,[O’”qug Wt >0 in Z%,
2t

Wt > 0 in Z%,
we =0 on {x=(x,xn) € Q,xy =t}

By Hopf's Lemma :

_28u

vx' € RV (X', t) = gxwt X' t) <O0.
N

Ixn
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Monotonicity result in an epigraph

Theorem (Comparison principle in unbounded slabs of smalls
width)

Let N > 2, Q = Y% an open set included in a strip RN=1 x [0, b] ie
t<b M>0,fe C,%’i(]R*). Let u,v € H} (Q) N C%(Q) satisfying
—Au—f(u) < —Av—1f(v) in £,
lul, [v] < M in €,

u<v on OS2

Then there exist 6 = 0(f, M) > 0 such that

O<t<fO=u<vin.
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Monotonicity result in an epigraph

Theorem (Comparison principle in unbounded slabs of smalls
width)

Let N > 2, Q = Y% an open set included in a strip RN=1 x [0, b] ie
t<b M>0, fe COL{R"). Letu,v e HL () N C%(Q) satisfying

loc

—Au—f(u) < —Av—1f(v) in £,
lul, [v] < M in €,
u<v on OS2
Then there exist 6 = 0(f, M) > 0 such that

O<t<fO=u<vin.

We define

t:=sup{t>0,u<uyinX§ VA< t}
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Monotonicity result in an epigraph

if t < 400

Proposition

For every ¢ € (0, %) there exists £(d) € (0, ) such that

Ve e (055(6)) u < Uifes in Z?y’f,g-
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Monotonicity result in an epigraph

if t < 400

Proposition

For every ¢ € (0, %) there exists £(d) € (0, ) such that

Ve e (055(6)) u < Uifes in Z?y’f,g-

so we have
. : g
Bre N 25z g

u
. g g
Ui e in zm\zﬁ_&

T ©
NN
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Existing works
Case N =2 and 3

The Serrin's overdetermined problem Sl o e e

Theorem (A.Farina, E.Valdinoci, 2009)

Let N =2,3 and f be locally Lipschitz.
Let Q be an open epigraph of RN with C3 and uniformly Lipschitz
boundary.
Suppose that u € C?(Q) N L>°(Q) satisfies (1) and that there
exists 03 > & > 61 > 0 in such a way that

e f(t) > 1t for any t € (0,41),

e f is nonincreasing on (02, 93),

e f >0 on(0,03),

e f <0 on [d3,+00).
Then, we have that Q = Rﬁf up to isometry and that there exists
up : (0, +00) — (0,400) in such a way that

u(xy, - ,xn) = uo(xn) for any (xi,--- ,xn) € Q.
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The Serrin's overdetermined problem Sl o e e

Theorem (Case N = 2)

Let N =2 and Q C RN an epigraph bounded from below such
that g € C3(RN-1)neb¢(RNV-1). Let f € C}([0,+c0)) and u a
bounded solution to (1).

Then, Q = Rﬂ\r’ up to isometry and there exists

up : [0, +00) — [0, +00) strictly increasing such that

u(x) = up(xy) Vx € Q.
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Theorem (Case N = 2)

Let N =2 and Q C RN an epigraph bounded from below such
that g € C3(RN-1)neb¢(RNV-1). Let f € C}([0,+c0)) and u a
bounded solution to (1).

Then, Q = Rﬂ\r’ up to isometry and there exists

up : [0, +00) — [0, +00) strictly increasing such that

u(x) = up(xy) Vx € Q.

Remark : If £(0) > 0 then we can just suppose that Q is an
uniformly continuous epigraph bounded from below, of class C3.
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The Serrin's overdetermined problem

We define

F(t) = /ot f(s)ds and c¢,:= sup F(t).

te[0,supq u]

Theorem (Case N = 3)

Let N =3 and Q C RN an epigraph bounded from below such
that g € C3(RN-1)nebe(RN-1). Let f € CY([0,+o0)) and u a
bounded solution to (1).
Suppose that

¢y = F(supu). (3)

Q

Then, Q =R up to isometry and there exists
up : [0, +00) — [0, +00) strictly increasing such that

u(x) = uo(xy) Vx € Q.




The Serrin's overdetermined problem

Sketch of the proof

Let Q C R3 be a globally Lipschitz continuous epigraph bounded from below. Let f € CI(R) and u € Cz(ﬁ) be a
bounded solution to (1).
Assume that one of the following assumptions hold true :
(H1) f(t) > 0O, for any t > 0,
(H2) there exists ¢ > 0, such that f(t) > 0 on [0, ¢] and f(t) < 0 on [{, +o0),
(H3) there exists 0 < (1 < (a such that f(t) > 0in [0, (1], f(t) < 0in [C1, ¢2] and f(t) > 0 in (2, +00).
Then,

cy = F(sup u).

Q
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Sketch of the proof

Let Q C R3 be a globally Lipschitz continuous epigraph bounded from below. Let f € CI(R) and u € Cz(ﬁ) be a
bounded solution to (1).
Assume that one of the following assumptions hold true :
(H1) f(t) > 0O, for any t > 0,
(H2) there exists ¢ > 0, such that f(t) > 0 on [0, ¢] and f(t) < 0 on [{, +o0),
(H3) there exists 0 < (1 < (a such that f(t) > 0in [0, (1], f(t) < 0in [C1, ¢2] and f(t) > 0 in (2, +00).
Then,
cy = F(sup u).

Q
Let Q C R3 be an epigraph bounded from below with g € ij’ca (R?) such that HVgHCLQ(RQ) < +oo,

f € CY(R) such that f(0) > 0 and u € C?(Q) be a bounded solution to (1).
Then,

cy = F(sup u).
Q

.
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The Serrin's overdetermined problem

A Poincaré-geometric's type formule

Let Q be an open subset of RN with C3 boundary.
Suppose that u € C2(RQ) satisfies (1) with f locally Lipschitz, and

ou

(x) >0, foranyx € Q.
Oxp

Then, for any R > 0

Vu(x)[?
(Va2 + |V 9ull?) < V9P, @
In(R)? x|
Bz BR\B_ /5NQ
and R
| Vu(x)? 2|Vu(x)[? |Vul®
dx < —————dxdt + . (5)
|><\2 +3 2
BR\B /N0 vR Bt\B\/EﬁQ BR\B_ /N0
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Case N = 3.

Sketch of the proof

Let Q C R3 be a Lipschitz continuous epigraph with a boundary of
class Ct. Let f € CL(R) and u € C?(Q2) be a bounded solution to
(1).
Assume that

ﬂ(x) >0 foranyx €Q
8XN y ’

and
cu = F(llull(e));
Then, there exists C > 0, in such a way that

/ |Vu(x)[?dx < CR*> for any R > 0.
BrNQ
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Proof of proposition (f < +00) with f(0) > 0

Suppose that there exists 6 € (0, %) in such a way that

1 P
vk>0 Jek€(0,,) Ix e T8, such that u(x*) > ugy., (x¥).
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Annexe

Proof of proposition (f < +00) with f(0) > 0

Suppose that there exists 6 € (0, %) in such a way that
1 -
vk>0 Jek€(0,,) Ix e T8, such that u(x*) > ugy., (x¥).
xf € [0, — 9], thus x§ — xoo € [, T — &]. We fix
ue(x) = u(x' + (x*)', x)
where x = (X', xy) € QX := {(x, xn) € RN, xy > gi(x’)} and

gu(x') = g(x + (x")).
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Proof of proposition (f < +00) with f(0) > 0

We have
—Auy = f(ug) in QK
ug >0 in QK
u, =0 on 90k

uk(0 vXII\<I) > Uk,?—i—ek(olaxll\(I)
uk(x) < uz(x) in X%
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We have
—Auy = f(ug) in QK
ue >0 in QK
u, =0 on 90k
( 7XII\<I) > uk,f—l—ak(olaxll\(/)
uk(x) < uz(x) in X%

We can show that there exists go, € CO(RV=1) such that
gk = g0 in GR(RMTY).

We denote by Q its epigraph.
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Proof of proposition (f < +00) with f(0) > 0

We have
—Auy = f(ug) in QK
ue >0 in QK
u, =0 on 90k
( 7XII\<I) > uk,f—l—ak(olaxll\(/)
uk(x) < uz(x) in X%

We can show that there exists go, € CO(RV=1) such that
gk = g0 in GR(RMTY).

We denote by Q its epigraph.
And there exists uy, € C2(Q%) such that

U = U in G2 (Q%).
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Proof of proposition (f < +00) with f(0) > 0

Moreover u, solves

—Aus = f(Us) in Q%
Uy =0 in Q%
Uso =0 on 0Q%>,

Uoo (0", Xo0) > oo #(0, Xo0),
Uso(X) < o 7(X) in X¥.
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Proof of proposition (f < +00) with f(0) > 0

Moreover u, solves

—Auso = f(Uso) in Q%
Uso = 0 in Q%>
Uso =0 on 0Q%>,
Uoo (0", Xo0) > oo #(0, Xo0),
Uso(X) < o 7(X) in X¥.

We have
—Ause + Lftuge >0 in Q

thus by the maximum principle

either us,, =0  or either uy, > 0.
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Proof of proposition (f < +00) with f(0) > 0

If we fix w = Uy, 3 — Us then we have

—Aw+Liw >0 in Z?‘”,
w >0 in Z?"O,
w(0', %) =0
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Proof of proposition (f < +00) with f(0) > 0

If we fix w = Uy, 3 — Us then we have

—Aw+Liw >0 in Z?‘”,
w >0 in Z?"O,
w(0', %) =0

Therefore, by the maximum principle w = 0 in connected
componant of ¥£ which contains (0', xoo).
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Theorem (Hopf's lemma)

Let Q C RN be a domain and u € C?(Q) N CY(Q) and c € L>®(Q) such that

—Au+cu>0 in Q
u>0 in Q

Then
@ If there exists xg € Q such that u(xo) = 0 then

u=0 in Q.

Q Ifnot

u>0 in Q

and if yo € 0, u(yo) = 0, and Q2 satisfies the interior ball condition at yy then

ou
5()/0) <0.

where v is the exterior unit normal to € at yy.
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