Serrin's overdetermined problem in epigraphs

Nicolas Beuvin

PHD's seminar

9 october 2024

[Monotonicity result in an epigraph](#page-10-0) [The Serrin's overdetermined problem](#page-32-0) [Annexe](#page-45-0)

1 [Introduction](#page-1-0)

[Monotonicity result in an epigraph](#page-10-0)

- [Case](#page-11-0) $f(0) > 0$
- [Case](#page-19-0) $f(0) < 0$
- [Sketch of the proof : The moving plane](#page-23-0)

[The Serrin's overdetermined problem](#page-32-0)

- **•** [Existing works](#page-33-0)
- Case $N = 2$ and 3
- [Sketch of the proof](#page-41-0)

4 [Annexe](#page-45-0)

[Monotonicity result in an epigraph](#page-10-0) [The Serrin's overdetermined problem](#page-32-0) [Annexe](#page-45-0)

Serrin's overdetermined problem :

$$
\begin{cases}\n-\Delta u = f(u) & \text{in } \Omega, \\
u \ge 0 & \text{in } \Omega,\n\end{cases}
$$

[Monotonicity result in an epigraph](#page-10-0) [The Serrin's overdetermined problem](#page-32-0) [Annexe](#page-45-0)

Serrin's overdetermined problem :

$$
\begin{cases}\n-\Delta u = f(u) & \text{in } \Omega, \\
u \ge 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega, \\
\frac{\partial u}{\partial \eta} = c & \text{on } \partial\Omega.\n\end{cases}
$$

(1)

[Monotonicity result in an epigraph](#page-10-0) [The Serrin's overdetermined problem](#page-32-0) [Annexe](#page-45-0)

Serrin's overdetermined problem :

$$
\begin{cases}\n-\Delta u = f(u) & \text{in } \Omega, \\
u \ge 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega, \\
\frac{\partial u}{\partial \eta} = c & \text{on } \partial\Omega.\n\end{cases}
$$

(1)

where

- $\bullet \ c \in \mathbb{R} \backslash \{0\}$
- $u \in C^2(\overline{\Omega})$ is a classical solution.
- $\Omega \subset \mathbb{R}^{\textsf{N}}$ is an epigraph, i.e

$$
\{x=(x',x_N)\in\mathbb{R}^N,x_N>g(x')\},\
$$

where $g:\mathbb{R}^{N-1}\rightarrow\mathbb{R}$ is a differentiable function.

 \bullet f : $\mathbb{R} \to \mathbb{R}$ is a differentiable function on \mathbb{R} .

[Monotonicity result in an epigraph](#page-10-0) [The Serrin's overdetermined problem](#page-32-0) [Annexe](#page-45-0)

Historic

A lot of applications in Physics : fluid mechanics,... Example : The Soap bubble problem

$$
\begin{cases}\n-\Delta u = 1 & \text{in } \Omega, \\
u \ge 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega, \\
\frac{\partial u}{\partial \eta} = c & \text{on } \partial\Omega.\n\end{cases}
$$

(2)

where

- *u* represent a fluid inside a soap bubble.
- \bullet c is a constant related to the viscosity and density of u .
- \bullet Ω is a soap bubble.

[Monotonicity result in an epigraph](#page-10-0) [The Serrin's overdetermined problem](#page-32-0) [Annexe](#page-45-0)

Historic

J. Serrin proved in 1971 the following result :

Theorem (Soap bubble Theorem)

Let Ω be a bounded domain whose boundary is of class C^2 . If there exists a function $u\in C^2(\overline{\Omega})$ satisfying (1) then Ω must be a ball and u is radially symmetric about its center.

[Monotonicity result in an epigraph](#page-10-0) [The Serrin's overdetermined problem](#page-32-0) [Annexe](#page-45-0)

Historic

J. Serrin proved in 1971 the following result :

Theorem (Soap bubble Theorem)

Let Ω be a bounded domain whose boundary is of class C^2 . If there exists a function $u\in C^2(\overline{\Omega})$ satisfying (1) then Ω must be a ball and u is radially symmetric about its center.

Question : What is the situation when Ω is an unbounded domain?

[Monotonicity result in an epigraph](#page-10-0) [The Serrin's overdetermined problem](#page-32-0) [Annexe](#page-45-0)

Historic

In 1997, H. Berestycki, L. Caffarelli and L. Nirenberg conjectured that

Conjecture

If Ω is a smooth domain with Ω^c connected and that there is a bounded positive solution of [\(1\)](#page-2-0) for some Lipschitz function f then Ω is either a half space, or a cylinder $\Omega = B_k \times \mathbb{R}^{n-k}$, where B_k is k-dimensional Euclidean ball, or the complement of a ball or a cylinder.

[Monotonicity result in an epigraph](#page-10-0) [The Serrin's overdetermined problem](#page-32-0) [Annexe](#page-45-0)

Historic

In 1997, H. Berestycki, L. Caffarelli and L. Nirenberg conjectured that

Conjecture

If Ω is a smooth domain with Ω^c connected and that there is a bounded positive solution of [\(1\)](#page-2-0) for some Lipschitz function f then Ω is either a half space, or a cylinder $\Omega = B_k \times \mathbb{R}^{n-k}$, where B_k is k-dimensional Euclidean ball, or the complement of a ball or a cylinder.

In our case, the conjecture becomes

Conjecture

If Ω is a smooth enough epigraph and that there is a bounded positive solution of [\(1\)](#page-2-0) for some Lipschitz function f then Ω is a half space.

[Case](#page-19-0) $f(0) \leq 0$ [Sketch of the proof : The moving plane](#page-23-0)

[Introduction](#page-1-0)

2 [Monotonicity result in an epigraph](#page-10-0)

- [Case](#page-11-0) $f(0) > 0$
- [Case](#page-19-0) $f(0) < 0$
- [Sketch of the proof : The moving plane](#page-23-0)

[The Serrin's overdetermined problem](#page-32-0)

- **•** [Existing works](#page-33-0)
- Case $N = 2$ and 3
- [Sketch of the proof](#page-41-0)

4 [Annexe](#page-45-0)

[Case](#page-11-0) $f(0) \geq 0$ [Case](#page-19-0) $f(0) \leq 0$ [Sketch of the proof : The moving plane](#page-23-0)

[Introduction](#page-1-0)

2 [Monotonicity result in an epigraph](#page-10-0)

- [Case](#page-11-0) $f(0) > 0$
- [Case](#page-19-0) $f(0) < 0$
- [Sketch of the proof : The moving plane](#page-23-0)

[The Serrin's overdetermined problem](#page-32-0)

- **•** [Existing works](#page-33-0)
- Case $N = 2$ and 3
- [Sketch of the proof](#page-41-0)

4 [Annexe](#page-45-0)

[Case](#page-11-0) $f(0) > 0$ [Case](#page-19-0) $f(0) < 0$ [Sketch of the proof : The moving plane](#page-23-0)

Theorem (case $f(0) \ge 0$)

Let Ω be a uniformly continuous epigraph bounded from below and satisfying a uniform exterior cone condition on *∂*Ω. Assume $f\in\mathcal{C}^{0,1}_{loc}([0,+\infty))$ with $f(0)\geq 0$ and let $u\in\mathcal{C}^2(\Omega)\cap\mathcal{C}^0(\overline{\Omega})$ be a classical solution of

$$
\begin{cases}\n-\Delta u = f(u) & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.\n\end{cases}
$$

Suppose that $\nabla u \in L^{\infty}(\Omega)$, then u is strictly increasing in the x_N −direction, i.e.

$$
\frac{\partial u}{\partial x_N}(x) > 0 \quad \forall x \in \Omega.
$$

[Case](#page-11-0) $f(0) > 0$ [Case](#page-19-0) $f(0) < 0$ [Sketch of the proof : The moving plane](#page-23-0)

Definition

We say that Ω satisfy a uniform exterior cone condition on *∂*Ω if for any $x_0 \in \partial \Omega$ there exists a finite right circular cone V_{x_0} with vertex x_0 such that

$$
\overline{\Omega}\cap V_{x_0}=\{x_0\},
$$

and the cones V_{x_0} are all congruent to some fixed cone $V.$

[Case](#page-11-0) $f(0) > 0$ [Case](#page-19-0) $f(0) \leq 0$ [Sketch of the proof : The moving plane](#page-23-0)

Definition

Examples :

• If Ω is a Lipschitz epigraph (i.e g is a Lipschitz continuous function) then Ω satisfy a uniform exterior cone condition on *∂*Ω.

[Case](#page-11-0) $f(0) > 0$ [Case](#page-19-0) $f(0) \leq 0$ [Sketch of the proof : The moving plane](#page-23-0)

Definition

Examples :

• If Ω is a Lipschitz epigraph (i.e g is a Lipschitz continuous function) then Ω satisfy a uniform exterior cone condition on *∂*Ω.

[Case](#page-19-0) f(0) ≥ 0
Case f(0) < 0
[Sketch of the proof : The moving plane](#page-23-0)

Definition

[Case](#page-19-0) f(0) ≥ 0
Case f(0) < 0
[Sketch of the proof : The moving plane](#page-23-0)

Definition

[Case](#page-11-0) $f(0) > 0$ [Case](#page-19-0) $f(0) \leq 0$ [Sketch of the proof : The moving plane](#page-23-0)

Remark

We don't necessarily need that the epigraph be uniformly continuous. Indeed, if g satisfy the following property then the Theorem "case $f(0) \geq 0$ " holds true.

Proposition

There exists an injection ϕ : $g(\mathbb{R}^{N-1}) \to \mathbb{R}$ continuous such that $\phi \circ g$ is uniformly continuous on $\mathbb{R}^{N-1}.$

Example :

 \bullet

$$
\begin{aligned}\n\exp: \mathbb{R}^{N-1} &\to \mathbb{R} \\
x' &= (x_1, \cdots, x_{N-1}) \to e^{x_1}.\n\end{aligned}
$$

 $Case f(0) < 0$ $Case f(0) < 0$ [Sketch of the proof : The moving plane](#page-23-0)

[Introduction](#page-1-0)

2 [Monotonicity result in an epigraph](#page-10-0)

- [Case](#page-11-0) $f(0) > 0$
- \bullet [Case](#page-19-0) $f(0) < 0$

• [Sketch of the proof : The moving plane](#page-23-0)

[The Serrin's overdetermined problem](#page-32-0)

- **•** [Existing works](#page-33-0)
- Case $N = 2$ and 3
- [Sketch of the proof](#page-41-0)

4 [Annexe](#page-45-0)

[Case](#page-11-0) $f(0) > 0$ $Case f(0) < 0$ $Case f(0) < 0$ [Sketch of the proof : The moving plane](#page-23-0)

Theorem (case $f(0) < 0$)

Let $N > 2$ and Ω be a continuous epigraph bounded from below such that $g\in \mathfrak{C}^{1,\alpha}(\mathbb{R}^{N-1}).$ Let $f\in \mathcal{C}^1(\mathbb{R})$ such that $f(0)< 0$ and $u\in\mathcal{C}^2(\overline{\Omega})$ be a bounded solution to

$$
\begin{cases}\n-\Delta u = f(u) & \text{in } \Omega, \\
u \ge 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega, \\
\frac{\partial u}{\partial \eta} = c & \text{on } \partial\Omega.\n\end{cases}
$$

Then u is strictly increasing in the x_N -direction, i.e.

$$
\frac{\partial u}{\partial x_N} > 0 \quad \text{in} \quad \Omega.
$$

[Case](#page-11-0) $f(0) > 0$ [Case](#page-19-0) $f(0) < 0$ [Sketch of the proof : The moving plane](#page-23-0)

Definition/Remark

Definition

Let $X \subset \mathbb{R}^N$ an open set and $\alpha \in (0,1].$ We denote by $\mathfrak{C}^{1,\alpha}(X)$ the set of functions $h: X \to \mathbb{R}$ in such a way that $h \in C^1(X)$ and $\nabla h \in C^{0,\alpha}(X),$ that is

$$
\|\nabla h\|_{C^{0,\alpha}(X)}=\sup_{x\in\overline{X}}|\nabla h(x)|+\sup_{x,y\in\overline{X},x\neq y}\frac{|\nabla h(x)-\nabla h(y)|}{|x-y|^{\alpha}}<+\infty.
$$

[Case](#page-11-0) $f(0) > 0$ $Case f(0) < 0$ $Case f(0) < 0$ [Sketch of the proof : The moving plane](#page-23-0)

Definition/Remark

Definition

Let $X \subset \mathbb{R}^N$ an open set and $\alpha \in (0,1].$ We denote by $\mathfrak{C}^{1,\alpha}(X)$ the set of functions $h: X \to \mathbb{R}$ in such a way that $h \in C^1(X)$ and $\nabla h \in C^{0,\alpha}(X),$ that is

$$
\|\nabla h\|_{C^{0,\alpha}(X)}=\sup_{x\in\overline{X}}|\nabla h(x)|+\sup_{x,y\in\overline{X},x\neq y}\frac{|\nabla h(x)-\nabla h(y)|}{|x-y|^{\alpha}}<+\infty.
$$

Remark :

Theorem

Let $\Omega \subset \mathbb{R}^N$ be an epigraph with $g \in \mathcal{C}^1(\mathbb{R}^{N-1})$. Let $f \in \mathcal{C}^0(\mathbb{R})$ and $u\in\mathcal{C}^2(\Omega)\cap\mathcal{C}^1(\overline{\Omega})$ be a bounded solution to $(1).$ $(1).$ Then

∇u is bounded in Ω*,*

If $f(0) > 0$ then the Theorem "case $f(0) < 0$ " is true since g is Lipschitz continuous, bounded from below and ∇u is bounded.

[Case](#page-11-0) $f(0) > 0$ [Case](#page-19-0) $f(0) \leq 0$ [Sketch of the proof : The moving plane](#page-23-0)

[Introduction](#page-1-0)

2 [Monotonicity result in an epigraph](#page-10-0)

- [Case](#page-11-0) $f(0) > 0$
- [Case](#page-19-0) $f(0) < 0$

• [Sketch of the proof : The moving plane](#page-23-0)

[The Serrin's overdetermined problem](#page-32-0)

- **•** [Existing works](#page-33-0)
- Case $N = 2$ and 3
- [Sketch of the proof](#page-41-0)

4 [Annexe](#page-45-0)

[Case](#page-11-0) f (0) ≥ 0 [Case](#page-19-0) f (0) *<* 0 [Sketch of the proof : The moving plane](#page-23-0)

Definition

Let
$$
0 < a < b
$$
, we define\n\n
$$
\bullet \Sigma_a^g = \{x = (x', x_N) \in \mathbb{R}^N, g(x') < x_N < a\},
$$
\n
$$
\bullet \Sigma_{a,b}^g = \{x = (x', x_N) \in \mathbb{R}^N, g(x') + a < x_N < b\},
$$
\n
$$
\forall x \in \Sigma_a^g \quad u_a(x) = u(x_1, \dots, 2a - x_N).
$$

[Sketch of the proof : The moving plane](#page-23-0)

Sketch of the proof

We want to prove that

$$
\Gamma:=\{t>0, u\leqslant u_\lambda \text{ in } \Sigma_\lambda^g \ \forall \lambda\leqslant t\}=(0,+\infty).
$$

[Case](#page-19-0) $f(0) \leq 0$ [Sketch of the proof : The moving plane](#page-23-0)

Sketch of the proof

We want to prove that

$$
\Gamma:=\{t>0, u\leqslant u_\lambda \text{ in } \Sigma_\lambda^g \ \forall \lambda\leqslant t\}=(0,+\infty).
$$

Indeed, for $t > 0$, if we define on Σ_t^g , $w_t = u_t - u$ then w_t satisfy

$$
\begin{cases}\n-\Delta w_t + L_{f,[0,||u||_{\Sigma_2^g}]} w_t \geq 0 & \text{in } \Sigma_t^g, \\
w_t \geq 0 & \text{in } \Sigma_t^g, \\
w_t = 0 & \text{on } \{x = (x',x_N) \in \Omega, x_N = t\}.\n\end{cases}
$$

[Case](#page-11-0) $f(0) > 0$ [Case](#page-19-0) $f(0) \leq 0$ [Sketch of the proof : The moving plane](#page-23-0)

Sketch of the proof

We want to prove that

$$
\Gamma:=\{t>0, u\leqslant u_\lambda \text{ in } \Sigma_\lambda^g \ \forall \lambda\leqslant t\}=(0,+\infty).
$$

Indeed, for $t > 0$, if we define on Σ_t^g , $w_t = u_t - u$ then w_t satisfy

$$
\begin{cases}\n-\Delta w_t + L_{f,[0,||u||_{\Sigma_2^g}]} w_t \geq 0 & \text{in } \Sigma_t^g, \\
w_t \geq 0 & \text{in } \Sigma_t^g, \\
w_t = 0 & \text{on } \{x = (x', x_N) \in \Omega, x_N = t\}.\n\end{cases}
$$

By Hopf's Lemma :

$$
\forall x' \in \mathbb{R}^{N-1} \quad -2\frac{\partial u}{\partial x_N}(x',t) = \frac{\partial w_t}{\partial x_N}(x',t) < 0.
$$

[Case](#page-11-0) $f(0) > 0$ [Case](#page-19-0) $f(0) < 0$ [Sketch of the proof : The moving plane](#page-23-0)

$Γ ≠ ∅$

Theorem (Comparison principle in unbounded slabs of smalls width)

Let $N \geqslant 2$, $\Omega = \Sigma_{t}^{g}$ an open set included in a strip $\mathbb{R}^{N-1} \times [0,b]$ ie $t < b$, $M > 0$, $f \in C_{loc}^{0,1}(\mathbb{R}^+)$. Let $u,v \in H_{loc}^1(\overline{\Omega}) \cap C^0(\overline{\Omega})$ satisfying

$$
\begin{cases}\n-\Delta u - f(u) \leq -\Delta v - f(v) & \text{in } \Omega, \\
|u|, |v| < M & \text{in } \Omega, \\
u \leqslant v & \text{on } \partial\Omega.\n\end{cases}
$$

Then there exist $\theta = \theta(f, M) > 0$ such that

 $0 < t < \theta \Rightarrow u \leqslant v$ in Ω .

[Case](#page-11-0) $f(0) > 0$ [Case](#page-19-0) $f(0) < 0$ [Sketch of the proof : The moving plane](#page-23-0)

$Γ ≠ ∅$

Theorem (Comparison principle in unbounded slabs of smalls width)

Let $N \geqslant 2$, $\Omega = \Sigma_{t}^{g}$ an open set included in a strip $\mathbb{R}^{N-1} \times [0,b]$ ie $t < b$, $M > 0$, $f \in C_{loc}^{0,1}(\mathbb{R}^+)$. Let $u,v \in H_{loc}^1(\overline{\Omega}) \cap C^0(\overline{\Omega})$ satisfying

$$
\begin{cases}\n-\Delta u - f(u) \leq -\Delta v - f(v) & \text{in } \Omega, \\
|u|, |v| < M & \text{in } \Omega, \\
u \leqslant v & \text{on } \partial\Omega.\n\end{cases}
$$

Then there exist $\theta = \theta(f, M) > 0$ such that

 $0 < t < \theta \Rightarrow u \leqslant v$ in Ω .

We define

$$
\tilde t:=\sup\{t>0, u\leqslant u_\lambda \text{ in } \Sigma_\lambda^g\ \forall\,\lambda\leqslant t\}.
$$

[Case](#page-19-0) $f(0) < 0$ [Sketch of the proof : The moving plane](#page-23-0)

if $\tilde{t} < +\infty$

Proposition

For every $\delta \in (0, \frac{\tilde{t}}{2})$ $(\frac{t}{2})$, there exists $\varepsilon(\delta) \in (0,\delta)$ such that

$$
\forall \, \varepsilon \in (0, \varepsilon(\delta)) \quad u \leqslant u_{\tilde{\tau}+\varepsilon}, \, \text{ in } \, \overline{\Sigma_{\delta, \tilde{\tau}-\delta}^{\mathcal{B}}}.
$$

[Case](#page-19-0) $f(0) < 0$ [Sketch of the proof : The moving plane](#page-23-0)

if $\tilde{t} < +\infty$

Proposition

For every $\delta \in (0, \frac{\tilde{t}}{2})$ $(\frac{t}{2})$, there exists $\varepsilon(\delta) \in (0,\delta)$ such that

$$
\forall \, \varepsilon \in (0, \varepsilon(\delta)) \quad u \leqslant u_{\tilde{\tau}+\varepsilon}, \, \text{ in } \, \overline{\Sigma_{\delta, \tilde{\tau}-\delta}^{\mathcal{B}}}.
$$

so we have

$$
\left\{\begin{array}{ll}\n u \leqslant u_{\tilde{t}+\varepsilon} & \text{in } \quad \overline{\Sigma_{\delta,\tilde{t}-\delta}^g}, \\
 u \leqslant u_{\tilde{t}+\varepsilon} & \text{in } \quad \Sigma_{\tilde{t}+\varepsilon}^g \setminus \overline{\Sigma_{\delta,\tilde{t}-\delta}^g}.\n\end{array}\right.
$$

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

[Introduction](#page-1-0)

[Monotonicity result in an epigraph](#page-10-0)

- [Case](#page-11-0) $f(0) > 0$
- [Case](#page-19-0) $f(0) < 0$
- [Sketch of the proof : The moving plane](#page-23-0)

3 [The Serrin's overdetermined problem](#page-32-0)

- **•** [Existing works](#page-33-0)
- Case $N = 2$ and 3
- [Sketch of the proof](#page-41-0)

4 [Annexe](#page-45-0)

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

[Introduction](#page-1-0)

[Monotonicity result in an epigraph](#page-10-0)

- [Case](#page-11-0) $f(0) > 0$
- [Case](#page-19-0) $f(0) < 0$
- [Sketch of the proof : The moving plane](#page-23-0)

3 [The Serrin's overdetermined problem](#page-32-0)

- **•** [Existing works](#page-33-0)
- Case $N = 2$ and 3
- [Sketch of the proof](#page-41-0)

4 [Annexe](#page-45-0)

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

Theorem (A.Farina, E.Valdinoci, 2009)

Let $N = 2, 3$ and f be locally Lipschitz.

Let Ω be an open epigraph of \mathbb{R}^N with C^3 and uniformly Lipschitz boundary.

Suppose that $u\in \mathcal{C}^2(\overline{\Omega})\cap L^\infty(\Omega)$ satisfies (1) and that there exists $\delta_3 > \delta_2 > \delta_1 > 0$ in such a way that

- \bullet f(t) > $\delta_1 t$ for any $t \in (0, \delta_1)$,
- \bullet f is nonincreasing on (δ_2, δ_3) ,
- \bullet f > 0 on (0, δ_3),
- \bullet f \leq 0 on $[\delta_3, +\infty)$.

Then, we have that $\Omega = \mathbb{R}^N_+$ up to isometry and that there exists u_0 : $(0, +\infty) \rightarrow (0, +\infty)$ in such a way that

$$
u(x_1,\dots,x_N)=u_0(x_N) \quad \text{for any } (x_1,\dots,x_N)\in\Omega.
$$

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

[Introduction](#page-1-0)

[Monotonicity result in an epigraph](#page-10-0)

- [Case](#page-11-0) $f(0) > 0$
- [Case](#page-19-0) $f(0) < 0$
- [Sketch of the proof : The moving plane](#page-23-0)

3 [The Serrin's overdetermined problem](#page-32-0)

- **•** [Existing works](#page-33-0)
- Case $N = 2$ and 3
- [Sketch of the proof](#page-41-0)

4 [Annexe](#page-45-0)

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

Theorem (Case $N = 2$)

Let $N=2$ and $\Omega \subset \mathbb{R}^N$ an epigraph bounded from below such that $g\in\mathcal{C}^3(\mathbb{R}^{N-1})\cap\mathfrak{C}^{1,\alpha}(\mathbb{R}^{N-1}).$ Let $f\in\mathcal{C}^1([0,+\infty))$ and u a bounded solution to [\(1\)](#page-2-0). Then, $\Omega = \mathbb{R}^N_+$ up to isometry and there exists $u_0 : [0, +\infty) \rightarrow [0, +\infty)$ strictly increasing such that $u(x) = u_0(x_N) \quad \forall x \in \Omega.$

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

Theorem (Case $N = 2$)

Let $N=2$ and $\Omega \subset \mathbb{R}^N$ an epigraph bounded from below such that $g\in\mathcal{C}^3(\mathbb{R}^{N-1})\cap\mathfrak{C}^{1,\alpha}(\mathbb{R}^{N-1}).$ Let $f\in\mathcal{C}^1([0,+\infty))$ and u a bounded solution to [\(1\)](#page-2-0). Then, $\Omega = \mathbb{R}^N_+$ up to isometry and there exists $u_0 : [0, +\infty) \rightarrow [0, +\infty)$ strictly increasing such that $u(x) = u_0(x_N) \quad \forall x \in \Omega$.

Remark : If $f(0) > 0$ then we can just suppose that Ω is an uniformly continuous epigraph bounded from below, of class C^3 .

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

We define

$$
F(t) = \int_0^t f(s)ds \text{ and } c_u := \sup_{t \in [0, \sup_{\Omega} u]} F(t).
$$

Theorem (Case $N = 3$)

Let $N=3$ and $\Omega \subset \mathbb{R}^N$ an epigraph bounded from below such that $g \in C^3(\mathbb{R}^{N-1}) \cap \mathfrak{C}^{1,\alpha}(\mathbb{R}^{N-1})$. Let $f \in C^1([0,+\infty))$ and u a bounded solution to [\(1\)](#page-2-0). Suppose that

$$
c_u = F(\sup_{\Omega} u). \tag{3}
$$

Then, $\Omega = \mathbb{R}^N_+$ up to isometry and there exists $u_0 : [0, +\infty) \rightarrow [0, +\infty)$ strictly increasing such that

 $u(x) = u_0(x_N) \quad \forall x \in \Omega$.

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

Theorem

Let $\Omega\subset\mathbb R^3$ be a globally Lipschitz continuous epigraph bounded from below. Let $f\in C^1(\mathbb R)$ and $u\in C^2(\overline{\Omega})$ be a bounded solution to [\(1\)](#page-2-0).

Assume that one of the following assumptions hold true :

(H1) $f(t) > 0$, for any $t > 0$,

(H2) there exists $\zeta > 0$, such that $f(t) > 0$ on $[0, \zeta]$ and $f(t) < 0$ on $[\zeta, +\infty)$,

(H3) there exists $0 < \zeta_1 < \zeta_2$ such that $f(t) \ge 0$ in $[0, \zeta_1]$, $f(t) \le 0$ in $[\zeta_1, \zeta_2]$ and $f(t) > 0$ in $(\zeta_2, +\infty)$. Then,

 $c_u = F(\sup u)$. Ω

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

Theorem

Let $\Omega\subset\mathbb R^3$ be a globally Lipschitz continuous epigraph bounded from below. Let $f\in C^1(\mathbb R)$ and $u\in C^2(\overline{\Omega})$ be a bounded solution to [\(1\)](#page-2-0).

Assume that one of the following assumptions hold true :

(H1) $f(t) > 0$, for any $t > 0$,

(H2) there exists $\zeta > 0$, such that $f(t) > 0$ on $[0, \zeta]$ and $f(t) < 0$ on $[\zeta, +\infty)$.

(H3) there exists $0 < \zeta_1 < \zeta_2$ such that $f(t) \ge 0$ in $[0, \zeta_1]$, $f(t) \le 0$ in $[\zeta_1, \zeta_2]$ and $f(t) > 0$ in $(\zeta_2, +\infty)$. Then,

 $c_u = F(\sup u)$. Ω

Theorem

 \mathcal{L} et $\Omega\subset\mathbb{R}^3$ be an epigraph bounded from below with $g\in\mathcal{C}^{2,\alpha}_{loc}(\mathbb{R}^2)$ such that $\|\nabla g\|_{\mathcal{C}^{1,\alpha}(\mathbb{R}^2)}<+\infty$, $f\in\text{\sf C}^1(\mathbb R)$ such that $f(0)\geq 0$ and $u\in\text{\sf C}^2(\overline{\Omega})$ be a bounded solution to $(1).$ $(1).$ Then,

 $c_u = F(\sup u)$. Ω

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

[Introduction](#page-1-0)

[Monotonicity result in an epigraph](#page-10-0)

- [Case](#page-11-0) $f(0) > 0$
- [Case](#page-19-0) $f(0) < 0$
- [Sketch of the proof : The moving plane](#page-23-0)

3 [The Serrin's overdetermined problem](#page-32-0)

- **•** [Existing works](#page-33-0)
- Case $N = 2$ and 3
- [Sketch of the proof](#page-41-0)

4 [Annexe](#page-45-0)

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

A Poincaré-geometric's type formule

Theorem

Let Ω be an open subset of \mathbb{R}^N with C^3 boundary. Suppose that $u \in C^2(\overline{\Omega})$ satisfies (1) with f locally Lipschitz, and

> *∂*u $\frac{1}{\partial x_N}(x) > 0$, for any $x \in \Omega$.

Then, for any $R > 0$

$$
\int_{\Omega \cap B_{\sqrt{R}}} (|\nabla u|^2 \mathcal{K}^2 + |\nabla_T |\nabla u||^2) \le \frac{4}{\ln(R)^2} \int_{B_R \setminus B_{\sqrt{R}} \cap \Omega} \frac{|\nabla u(x)|^2}{|x|^2} dx, \tag{4}
$$

and

$$
\int_{B_R\setminus B_{\sqrt{R}}\cap\Omega} \frac{|\nabla u(x)|^2}{|x|^2} dx \le \int_{\sqrt{R}}^R \int_{B_t\setminus B_{\sqrt{R}}\cap\Omega} \frac{2|\nabla u(x)|^2}{t^3} dx dt + \int_{B_R\setminus B_{\sqrt{R}}\cap\Omega} \frac{|\nabla u|^2}{R^2}.
$$
 (5)

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

Case $N = 3$.

Lemma

Let $\Omega \subset \mathbb{R}^3$ be a Lipschitz continuous epigraph with a boundary of class C^1 . Let $f\in C^1(\mathbb{R})$ and $u\in C^2(\overline{\Omega})$ be a bounded solution to [\(1\)](#page-2-0). Assume that

$$
\frac{\partial u}{\partial x_N}(x) > 0 \quad \text{ for any } x \in \Omega.
$$

and

$$
c_u=F(||u||_{L^{\infty}(\Omega)}),
$$

Then, there exists $C > 0$, in such a way that

$$
\int_{B_R \cap \Omega} |\nabla u(x)|^2 dx \leq CR^2 \quad \text{for any} \quad R > 0.
$$

[Existing works](#page-33-0) Case $N = 2$ and 3 [Sketch of the proof](#page-41-0)

[Introduction](#page-1-0)

[Monotonicity result in an epigraph](#page-10-0)

- [Case](#page-11-0) $f(0) > 0$
- [Case](#page-19-0) $f(0) < 0$
- [Sketch of the proof : The moving plane](#page-23-0)

[The Serrin's overdetermined problem](#page-32-0)

- **•** [Existing works](#page-33-0)
- Case $N = 2$ and 3
- [Sketch of the proof](#page-41-0)

[Annexe](#page-45-0)

Proof of proposition $(\tilde{t} < +\infty)$ with $f(0) > 0$

Suppose that there exists $\delta \in (0, \frac{\tilde{t}}{2})$ $(\frac{t}{2})$ in such a way that

$$
\forall k > 0 \quad \exists \varepsilon_k \in \left(0, \frac{1}{k}\right) \quad \exists x^k \in \overline{\Sigma_{\delta, \tilde{t}-\delta}^g} \quad \text{such that} \ \ u(x^k) > u_{\tilde{t}+\varepsilon_k}(x^k).
$$

Proof of proposition $(\tilde{t} < +\infty)$ with $f(0) > 0$

Suppose that there exists $\delta \in (0, \frac{\tilde{t}}{2})$ $(\frac{t}{2})$ in such a way that

$$
\forall k > 0 \quad \exists \varepsilon_k \in (0, \frac{1}{k}) \quad \exists x^k \in \overline{\Sigma_{\delta, \tilde{t} - \delta}^g} \quad \text{such that} \quad u(x^k) > u_{\tilde{t} + \varepsilon_k}(x^k).
$$

$$
x_N^k \in [\delta, \tilde{t} - \delta], \text{ thus } x_N^k \to x_\infty \in [\delta, \tilde{t} - \delta].
$$

Proof of proposition $(\tilde{t} < +\infty)$ with $f(0) > 0$

Suppose that there exists $\delta \in (0, \frac{\tilde{t}}{2})$ $(\frac{t}{2})$ in such a way that

$$
\forall k > 0 \quad \exists \varepsilon_k \in (0, \frac{1}{k}) \quad \exists x^k \in \overline{\Sigma_{\delta, \tilde{t} - \delta}^g} \quad \text{such that} \ u(x^k) > u_{\tilde{t} + \varepsilon_k}(x^k).
$$

$$
x_N^k \in [\delta, \tilde{t} - \delta], \text{ thus } x_N^k \to x_\infty \in [\delta, \tilde{t} - \delta]. \text{ We fix}
$$

$$
u_k(x) = u(x' + (x^k)', x_N)
$$

where $x = (x', x_N) \in \Omega^k := \{(x', x_N) \in \mathbb{R}^N, x_N > g_k(x')\}$ and

$$
g_k(x') = g(x' + (x^k)').
$$

Proof of proposition $(\tilde{t} < +\infty)$ with $f(0) > 0$

We have

$$
\begin{cases}\n-\Delta u_k = f(u_k) & \text{in } \Omega^k \\
u_k > 0 & \text{in } \Omega^k \\
u_k = 0 & \text{on } \partial \Omega^k \\
u_k(0', x_N^k) > u_{k, \tilde{t} + \varepsilon_k}(0', x_N^k) \\
u_k(x) \le u_{k, \tilde{t}}(x) & \text{in } \Sigma_{\tilde{t}}^{\mathcal{g}_k}\n\end{cases}
$$

Proof of proposition (\tilde{t} < + ∞) with $f(0) > 0$

We have

$$
\begin{cases}\n-\Delta u_k = f(u_k) & \text{in } \Omega^k \\
u_k > 0 & \text{in } \Omega^k \\
u_k = 0 & \text{on } \partial \Omega^k \\
u_k(0', x_N^k) > u_{k, \tilde{t} + \varepsilon_k}(0', x_N^k) \\
u_k(x) \le u_{k, \tilde{t}}(x) & \text{in } \Sigma_{\tilde{t}}^{\mathcal{g}_k}\n\end{cases}
$$

We can show that there exists $g_\infty\in C^0(\mathbb{R}^{N-1})$ such that

$$
g_k \to g_\infty \quad \text{in } C^0_{\text{loc}}(\mathbb{R}^{N-1}).
$$

We denote by Ω^{∞} its epigraph.

Proof of proposition (\tilde{t} < + ∞) with $f(0) > 0$

We have

$$
\begin{cases}\n-\Delta u_k = f(u_k) & \text{in } \Omega^k \\
u_k > 0 & \text{in } \Omega^k \\
u_k = 0 & \text{on } \partial \Omega^k \\
u_k(0', x_N^k) > u_{k, \tilde{t} + \varepsilon_k}(0', x_N^k) \\
u_k(x) \le u_{k, \tilde{t}}(x) & \text{in } \Sigma_{\tilde{t}}^{\mathcal{g}_k}\n\end{cases}
$$

We can show that there exists $g_\infty\in C^0(\mathbb{R}^{N-1})$ such that

$$
g_k \to g_\infty \quad \text{in } C^0_{\text{loc}}(\mathbb{R}^{N-1}).
$$

We denote by Ω^{∞} its epigraph. And there exists $u_\infty\in\mathcal{C}^2(\Omega^\infty)$ such that

$$
u_k \to u_\infty \quad \text{in } C^0_{\text{loc}}(\Omega^\infty).
$$

Proof of proposition (\tilde{t} < + ∞) with $f(0) > 0$

Moreover u_{∞} solves

$$
\begin{cases}\n-\Delta u_{\infty} = f(u_{\infty}) & \text{in } \Omega^{\infty}, \\
u_{\infty} \ge 0 & \text{in } \Omega^{\infty}, \\
u_{\infty} = 0 & \text{on } \partial \Omega^{\infty}, \\
u_{\infty}(0', x_{\infty}) > u_{\infty, \tilde{t}}(0', x_{\infty}), \\
u_{\infty}(x) \le u_{\infty, \tilde{t}}(x) & \text{in } \Sigma_{\tilde{t}}^{g_{\infty}}.\n\end{cases}
$$

Proof of proposition $(\tilde{t} < +\infty)$ with $f(0) > 0$

Moreover u_{∞} solves

$$
\begin{cases}\n-\Delta u_{\infty} = f(u_{\infty}) & \text{in } \Omega^{\infty}, \\
u_{\infty} \ge 0 & \text{in } \Omega^{\infty}, \\
u_{\infty} = 0 & \text{on } \partial \Omega^{\infty}, \\
u_{\infty}(0', x_{\infty}) > u_{\infty, \tilde{t}}(0', x_{\infty}), \\
u_{\infty}(x) \le u_{\infty, \tilde{t}}(x) & \text{in } \Sigma_{\tilde{t}}^{g_{\infty}}.\n\end{cases}
$$

We have

$$
-\Delta u_{\infty} + L_f u_{\infty} \ge 0 \quad \text{in } \Omega
$$

thus by the maximum principle

either
$$
u_{\infty} \equiv 0
$$
 or either $u_{\infty} > 0$.

Proof of proposition $(\tilde{t} < +\infty)$ with $f(0) > 0$

If we fix $w = u_{\infty,\tilde{t}} - u_{\infty}$ then we have

$$
\begin{cases}\n-\Delta w + L_f w \ge 0 & \text{in } \Sigma_{\tilde{t}}^{g_{\infty}}, \\
w \ge 0 & \text{in } \Sigma_{\tilde{t}}^{g_{\infty}}, \\
w(0', x_{\infty}) = 0\n\end{cases}
$$

Proof of proposition $(\tilde{t} < +\infty)$ with $f(0) > 0$

If we fix $w = u_{\infty}$ ^{$\tau - u_{\infty}$ then we have}

$$
\begin{cases}\n-\Delta w + L_f w \ge 0 & \text{in } \Sigma_{\tilde{t}}^{g_{\infty}}, \\
w \ge 0 & \text{in } \Sigma_{\tilde{t}}^{g_{\infty}}, \\
w(0', x_{\infty}) = 0\n\end{cases}
$$

Therefore, by the maximum principle $w \equiv 0$ in connected componant of $\Sigma^{{g}_{\infty}}_{\tilde{\tau}}$ $\frac{g_{\infty}}{\tilde{t}}$ which contains $(0', x_{\infty})$.

Theorem (Hopf's lemma)

Let $\Omega\subset\mathbb{R}^N$ be a domain and $u\in C^2(\Omega)\cap C^1(\overline{\Omega})$ and $c\in L^\infty(\Omega)$ such that

$$
\begin{cases}\n-\Delta u + cu \ge 0 & \text{in} \quad \Omega \\
u \ge 0 & \text{in} \quad \Omega\n\end{cases}
$$

Then

1 If there exists $x_0 \in \Omega$ such that $u(x_0) = 0$ then

 $u \equiv 0$ *in* Ω .

² Ifnot

 $u > 0$ in Ω .

and if $y_0 \in \partial \Omega$, $u(y_0) = 0$, and Ω satisfies the interior ball condition at y_0 then

$$
\frac{\partial u}{\partial \nu}(y_0)<0.
$$

where ν is the exterior unit normal to Ω at y_0 .