Serrin's overdetermined problem in epigraphs

Nicolas Beuvin

PHD's seminar

9 october 2024

Monotonicity result in an epigraph The Serrin's overdetermined problem Annexe

1 Introduction

2 Monotonicity result in an epigraph

- Case f(0) ≥ 0
- Case f(0) < 0
- Sketch of the proof : The moving plane

3 The Serrin's overdetermined problem

- Existing works
- Case N = 2 and 3
- Sketch of the proof

Monotonicity result in an epigraph The Serrin's overdetermined problem Annexe

Serrin's overdetermined problem :

$$-\Delta u = f(u) \quad \text{in} \quad \Omega, \\ u \ge 0 \qquad \text{in} \quad \Omega,$$

Monotonicity result in an epigraph The Serrin's overdetermined problem Annexe

Serrin's overdetermined problem :

$$egin{array}{cccc} -\Delta u = f(u) & {
m in} & \Omega, \ u \geqslant 0 & {
m in} & \Omega, \ u = 0 & {
m on} & \partial\Omega, \ rac{\partial u}{\partial \eta} = c & {
m on} & \partial\Omega. \end{array}$$

(1)

Monotonicity result in an epigraph The Serrin's overdetermined problem Annexe

Serrin's overdetermined problem :

$$-\Delta u = f(u) \quad \text{in} \quad \Omega, \\ u \ge 0 \qquad \text{in} \quad \Omega, \\ u = 0 \qquad \text{on} \quad \partial\Omega, \\ \frac{\partial u}{\partial \eta} = c \qquad \text{on} \quad \partial\Omega.$$

(1)

where

- $c \in \mathbb{R} \setminus \{0\}$
- $u \in C^2(\overline{\Omega})$ is a classical solution.
- $\Omega \subset \mathbb{R}^N$ is an epigraph, i.e

$$\{x = (x', x_N) \in \mathbb{R}^N, x_N > g(x')\},\$$

where $g: \mathbb{R}^{N-1} \to \mathbb{R}$ is a differentiable function.

• $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function on \mathbb{R} .

Monotonicity result in an epigraph The Serrin's overdetermined problem Annexe

Historic

A lot of applications in Physics : fluid mechanics,... Example : The Soap bubble problem

(2)

where

- *u* represent a fluid inside a soap bubble.
- c is a constant related to the viscosity and density of u.
- Ω is a soap bubble.

Monotonicity result in an epigraph The Serrin's overdetermined problem Annexe

Historic

J. Serrin proved in 1971 the following result :

Theorem (Soap bubble Theorem)

Let Ω be a bounded domain whose boundary is of class C^2 . If there exists a function $u \in C^2(\overline{\Omega})$ satisfying (1) then Ω must be a ball and u is radially symmetric about its center.

Monotonicity result in an epigraph The Serrin's overdetermined problem Annexe

Historic

J. Serrin proved in 1971 the following result :

Theorem (Soap bubble Theorem)

Let Ω be a bounded domain whose boundary is of class C^2 . If there exists a function $u \in C^2(\overline{\Omega})$ satisfying (1) then Ω must be a ball and u is radially symmetric about its center.

Question : What is the situation when Ω is an unbounded domain?

Monotonicity result in an epigraph The Serrin's overdetermined problem Annexe

Historic

In 1997, H. Berestycki, L. Caffarelli and L. Nirenberg conjectured that

Conjecture

If Ω is a smooth domain with Ω^c connected and that there is a bounded positive solution of (1) for some Lipschitz function f then Ω is either a half space, or a cylinder $\Omega = B_k \times \mathbb{R}^{n-k}$, where B_k is k-dimensional Euclidean ball, or the complement of a ball or a cylinder.

Monotonicity result in an epigraph The Serrin's overdetermined problem Annexe

Historic

In 1997, H. Berestycki, L. Caffarelli and L. Nirenberg conjectured that

Conjecture

If Ω is a smooth domain with Ω^c connected and that there is a bounded positive solution of (1) for some Lipschitz function f then Ω is either a half space, or a cylinder $\Omega = B_k \times \mathbb{R}^{n-k}$, where B_k is k-dimensional Euclidean ball, or the complement of a ball or a cylinder.

In our case, the conjecture becomes

Conjecture

If Ω is a smooth enough epigraph and that there is a bounded positive solution of (1) for some Lipschitz function f then Ω is a half space.

Case $f(0)\geq 0$ Case f(0)<0Sketch of the proof : The moving plane

1 Introduction

2 Monotonicity result in an epigraph

- Case f(0) ≥ 0
- Case f(0) < 0
- Sketch of the proof : The moving plane

3 The Serrin's overdetermined problem

- Existing works
- Case N = 2 and 3
- Sketch of the proof

 $\begin{array}{l} \mbox{Case } f(0) \geq 0 \\ \mbox{Case } f(0) < 0 \\ \mbox{Sketch of the proof : The moving plane} \end{array}$

1 Introduction

2 Monotonicity result in an epigraph

- Case f(0) ≥ 0
- Case f(0) < 0
- Sketch of the proof : The moving plane

3 The Serrin's overdetermined problem

- Existing works
- Case N = 2 and 3
- Sketch of the proof

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Theorem (case $f(0) \ge 0$)

Let Ω be a uniformly continuous epigraph bounded from below and satisfying a uniform exterior cone condition on $\partial\Omega$. Assume $f \in C^{0,1}_{loc}([0, +\infty))$ with $f(0) \ge 0$ and let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be a classical solution of

Suppose that $\nabla u \in L^{\infty}(\Omega)$, then u is strictly increasing in the x_N -direction, i.e.

$$\frac{\partial u}{\partial x_N}(x) > 0 \quad \forall x \in \Omega.$$

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Definition

We say that Ω satisfy a uniform exterior cone condition on $\partial\Omega$ if for any $x_0 \in \partial\Omega$ there exists a finite right circular cone V_{x_0} with vertex x_0 such that

$$\overline{\Omega}\cap V_{x_0}=\{x_0\},$$

and the cones V_{x_0} are all congruent to some fixed cone V.

 $\begin{array}{l} \mbox{Case } f(0) \geq 0 \\ \mbox{Case } f(0) < 0 \\ \mbox{Sketch of the proof : The moving plane} \end{array}$

Definition

Examples :

• If Ω is a Lipschitz epigraph (i.e g is a Lipschitz continuous function) then Ω satisfy a uniform exterior cone condition on $\partial \Omega$.

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Definition

Examples :

• If Ω is a Lipschitz epigraph (i.e g is a Lipschitz continuous function) then Ω satisfy a uniform exterior cone condition on $\partial \Omega$.

Introduction Monotonicity result in an epigraph Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Definition

Monotonicity result in an epigraph The Serrin's overdetermined problem Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Definition

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Remark

We don't necessarily need that the epigraph be uniformly continuous. Indeed, if g satisfy the following property then the Theorem "case $f(0) \ge 0$ " holds true.

Proposition

There exists an injection $\phi : g(\mathbb{R}^{N-1}) \to \mathbb{R}$ continuous such that $\phi \circ g$ is uniformly continuous on \mathbb{R}^{N-1} .

Example :

۲

$$exp: \mathbb{R}^{N-1} \to \mathbb{R}$$
$$x' = (x_1, \cdots, x_{N-1}) \to e^{x_1}.$$

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

1 Introduction

2 Monotonicity result in an epigraph

- Case f(0) ≥ 0
- Case f(0) < 0

• Sketch of the proof : The moving plane

3 The Serrin's overdetermined problem

- Existing works
- Case N = 2 and 3
- Sketch of the proof

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Theorem (case f(0) < 0)

Let $N \geq 2$ and Ω be a continuous epigraph bounded from below such that $g \in \mathfrak{C}^{1,\alpha}(\mathbb{R}^{N-1})$. Let $f \in C^1(\mathbb{R})$ such that f(0) < 0 and $u \in C^2(\overline{\Omega})$ be a bounded solution to

$$\begin{cases} -\Delta u = f(u) & \text{in } \Omega, \\ u \ge 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \\ \frac{\partial u}{\partial n} = c & \text{on } \partial\Omega. \end{cases}$$

Then u is strictly increasing in the x_N -direction, i.e.

$$\frac{\partial u}{\partial x_N} > 0 \quad in \quad \Omega.$$

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Definition/Remark

Definition

Let $X \subset \mathbb{R}^N$ an open set and $\alpha \in (0, 1]$. We denote by $\mathfrak{C}^{1,\alpha}(X)$ the set of functions $h: X \to \mathbb{R}$ in such a way that $h \in C^1(X)$ and $\nabla h \in C^{0,\alpha}(X)$, that is

$$\|\nabla h\|_{\mathcal{C}^{0,\alpha}(X)} = \sup_{x\in\overline{X}} |\nabla h(x)| + \sup_{x,y\in\overline{X},x\neq y} \frac{|\nabla h(x) - \nabla h(y)|}{|x-y|^{\alpha}} < +\infty.$$

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Definition/Remark

Definition

Let $X \subset \mathbb{R}^N$ an open set and $\alpha \in (0, 1]$. We denote by $\mathfrak{C}^{1,\alpha}(X)$ the set of functions $h: X \to \mathbb{R}$ in such a way that $h \in C^1(X)$ and $\nabla h \in C^{0,\alpha}(X)$, that is

$$\|\nabla h\|_{C^{0,\alpha}(X)} = \sup_{x\in\overline{X}} |\nabla h(x)| + \sup_{x,y\in\overline{X}, x\neq y} \frac{|\nabla h(x) - \nabla h(y)|}{|x-y|^{\alpha}} < +\infty.$$

<u>Remark :</u>

Theorem

Let $\Omega \subset \mathbb{R}^N$ be an epigraph with $g \in C^1(\mathbb{R}^{N-1})$. Let $f \in C^0(\mathbb{R})$ and $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ be a bounded solution to (1). Then

 ∇u is bounded in Ω ,

If $f(0) \ge 0$ then the Theorem "case f(0) < 0" is true since g is Lipschitz continuous, bounded from below and ∇u is bounded.

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

1 Introduction

2 Monotonicity result in an epigraph

- Case f(0) ≥ 0
- Case f(0) < 0

• Sketch of the proof : The moving plane

3 The Serrin's overdetermined problem

- Existing works
- Case N = 2 and 3
- Sketch of the proof

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Definition

Let
$$0 < a < b$$
, we define
• $\Sigma_a^g = \{x = (x', x_N) \in \mathbb{R}^N, g(x') < x_N < a\},$
• $\Sigma_{a,b}^g = \{x = (x', x_N) \in \mathbb{R}^N, g(x') + a < x_N < b\},$
 $\forall x \in \Sigma_a^g \quad u_a(x) = u(x_1, \cdots, 2a - x_N).$

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Sketch of the proof

We want to prove that

$$\Gamma := \{t > 0, u \leqslant u_{\lambda} \text{ in } \Sigma_{\lambda}^{g} \ \forall \lambda \leqslant t\} = (0, +\infty).$$

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Sketch of the proof

We want to prove that

$$\Gamma := \{t > 0, u \leqslant u_{\lambda} \text{ in } \Sigma_{\lambda}^{g} \ \forall \lambda \leqslant t\} = (0, +\infty).$$

Indeed, for t > 0, if we define on Σ_t^g , $w_t = u_t - u$ then w_t satisfy

$$\begin{cases} -\Delta w_t + \mathcal{L}_{f,[0,\|u\|_{\Sigma_{2t}^g}]} w_t \ge 0 & \text{in} \quad \Sigma_t^g, \\ w_t \ge 0 & \text{in} \quad \Sigma_t^g, \\ w_t = 0 & \text{on} \quad \{x = (x', x_N) \in \Omega, x_N = t\}. \end{cases}$$

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

Sketch of the proof

We want to prove that

$$\Gamma := \{t > 0, u \leqslant u_{\lambda} \text{ in } \Sigma_{\lambda}^{g} \ \forall \lambda \leqslant t\} = (0, +\infty).$$

Indeed, for t > 0, if we define on Σ_t^g , $w_t = u_t - u$ then w_t satisfy

$$\begin{cases} -\Delta w_t + \mathcal{L}_{f,[0,\|u\|_{\Sigma_{2t}^g}]} w_t \ge 0 & \text{in } \Sigma_t^g, \\ w_t \ge 0 & \text{in } \Sigma_t^g, \\ w_t = 0 & \text{on } \{x = (x', x_N) \in \Omega, x_N = t\}. \end{cases}$$

By Hopf's Lemma :

$$orall x' \in \mathbb{R}^{N-1} \quad -2 rac{\partial u}{\partial x_N}(x',t) = rac{\partial w_t}{\partial x_N}(x',t) < 0.$$

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

$\Gamma \neq \emptyset$

Theorem (Comparison principle in unbounded slabs of smalls width)

Let $N \ge 2$, $\Omega = \Sigma_t^g$ an open set included in a strip $\mathbb{R}^{N-1} \times [0, b]$ ie t < b, M > 0, $f \in C_{loc}^{0,1}(\mathbb{R}^+)$. Let $u, v \in H^1_{loc}(\overline{\Omega}) \cap C^0(\overline{\Omega})$ satisfying

$$\left(\begin{array}{ccc} -\Delta u - f(u) \leqslant -\Delta v - f(v) & in & \Omega, \\ |u|, |v| < M & in & \Omega, \\ u \leqslant v & on & \partial\Omega. \end{array} \right)$$

Then there exist $\theta = \theta(f, M) > 0$ such that

 $0 < t < \theta \Rightarrow u \leqslant v$ in Ω .

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

$\Gamma \neq \emptyset$

Theorem (Comparison principle in unbounded slabs of smalls width)

Let $N \ge 2$, $\Omega = \Sigma_t^g$ an open set included in a strip $\mathbb{R}^{N-1} \times [0, b]$ ie t < b, M > 0, $f \in C_{loc}^{0,1}(\mathbb{R}^+)$. Let $u, v \in H^1_{loc}(\overline{\Omega}) \cap C^0(\overline{\Omega})$ satisfying

$$\left(\begin{array}{ccc} -\Delta u - f(u) \leqslant -\Delta v - f(v) & in & \Omega, \\ |u|, |v| < M & in & \Omega, \\ u \leqslant v & on & \partial\Omega. \end{array} \right)$$

Then there exist $\theta = \theta(f, M) > 0$ such that

 $0 < t < \theta \Rightarrow u \leqslant v$ in Ω .

We define

$$\tilde{t} := \sup\{t > 0, u \leqslant u_{\lambda} \text{ in } \Sigma_{\lambda}^{g} \ \forall \lambda \leqslant t\}.$$

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

if $ilde{t} < +\infty$

Proposition

For every $\delta \in (0, \frac{\tilde{t}}{2})$, there exists $\varepsilon(\delta) \in (0, \delta)$ such that

$$\forall \varepsilon \in (0, \varepsilon(\delta)) \quad u \leqslant u_{\tilde{t}+\varepsilon}, \text{ in } \overline{\Sigma^{g}_{\delta, \tilde{t}-\delta}}.$$

Case $f(0) \ge 0$ Case f(0) < 0Sketch of the proof : The moving plane

if $ilde{t} < +\infty$

Proposition

For every $\delta \in (0, \frac{\tilde{t}}{2})$, there exists $\varepsilon(\delta) \in (0, \delta)$ such that

$$\forall \, \varepsilon \in (0, \varepsilon(\delta)) \quad u \leqslant u_{\tilde{t}+\varepsilon}, \ \text{in} \ \overline{\Sigma^{g}_{\delta, \tilde{t}-\delta}}.$$

so we have

$$\begin{cases} u \leqslant u_{\tilde{t}+\varepsilon} & \text{in } \overline{\Sigma^{g}_{\delta,\tilde{t}-\delta}}, \\ u \leqslant u_{\tilde{t}+\varepsilon} & \text{in } \Sigma^{g}_{\tilde{t}+\varepsilon} \backslash \overline{\Sigma^{g}_{\delta,\tilde{t}-\delta}}. \end{cases}$$

Existing works Case *N* = 2 and 3 Sketch of the proof

1 Introduction

2 Monotonicity result in an epigraph

- Case f(0) ≥ 0
- Case f(0) < 0
- Sketch of the proof : The moving plane

3 The Serrin's overdetermined problem

- Existing works
- Case N = 2 and 3
- Sketch of the proof

Existing works Case N = 2 and 3 Sketch of the proof

1 Introduction

2 Monotonicity result in an epigraph

- Case f(0) ≥ 0
- Case f(0) < 0
- Sketch of the proof : The moving plane

3 The Serrin's overdetermined problem

- Existing works
- Case N = 2 and 3
- Sketch of the proof

Existing works Case N = 2 and 3 Sketch of the proof

Theorem (A.Farina, E.Valdinoci, 2009)

Let N = 2,3 and f be locally Lipschitz.

Let Ω be an open epigraph of \mathbb{R}^N with C^3 and uniformly Lipschitz boundary.

Suppose that $u \in C^2(\overline{\Omega}) \cap L^{\infty}(\Omega)$ satisfies (1) and that there exists $\delta_3 > \delta_2 > \delta_1 > 0$ in such a way that

- $f(t) > \delta_1 t$ for any $t \in (0, \delta_1)$,
- f is nonincreasing on (δ_2, δ_3) ,
- f > 0 on (0, δ₃),
- $f \leq 0$ on $[\delta_3, +\infty)$.

Then, we have that $\Omega = \mathbb{R}^N_+$ up to isometry and that there exists $u_0: (0, +\infty) \to (0, +\infty)$ in such a way that

$$u(x_1,\cdots,x_N) = u_0(x_N)$$
 for any $(x_1,\cdots,x_N) \in \Omega$.

Existing works Case N = 2 and 3 Sketch of the proof

1 Introduction

2 Monotonicity result in an epigraph

- Case f(0) ≥ 0
- Case f(0) < 0
- Sketch of the proof : The moving plane

3 The Serrin's overdetermined problem

- Existing works
- Case N = 2 and 3
- Sketch of the proof

Existing works Case N = 2 and 3 Sketch of the proof

Theorem (Case N = 2)

Let N = 2 and $\Omega \subset \mathbb{R}^N$ an epigraph bounded from below such that $g \in C^3(\mathbb{R}^{N-1}) \cap \mathfrak{C}^{1,\alpha}(\mathbb{R}^{N-1})$. Let $f \in C^1([0, +\infty))$ and u a bounded solution to (1). Then, $\Omega = \mathbb{R}^N_+$ up to isometry and there exists $u_0 : [0, +\infty) \to [0, +\infty)$ strictly increasing such that $u(x) = u_0(x_N) \quad \forall x \in \Omega.$

Existing works Case N = 2 and 3 Sketch of the proof

Theorem (Case N = 2)

Let N = 2 and $\Omega \subset \mathbb{R}^N$ an epigraph bounded from below such that $g \in C^3(\mathbb{R}^{N-1}) \cap \mathfrak{C}^{1,\alpha}(\mathbb{R}^{N-1})$. Let $f \in C^1([0, +\infty))$ and u a bounded solution to (1). Then, $\Omega = \mathbb{R}^N_+$ up to isometry and there exists $u_0 : [0, +\infty) \rightarrow [0, +\infty)$ strictly increasing such that $u(x) = u_0(x_N) \quad \forall x \in \Omega.$

<u>Remark</u> : If $f(0) \ge 0$ then we can just suppose that Ω is an uniformly continuous epigraph bounded from below, of class C^3 .

Existing works Case N = 2 and 3 Sketch of the proof

We define

$$F(t) = \int_0^t f(s) ds$$
 and $c_u := \sup_{t \in [0, \sup_\Omega u]} F(t).$

Theorem (Case N = 3)

Let N = 3 and $\Omega \subset \mathbb{R}^N$ an epigraph bounded from below such that $g \in C^3(\mathbb{R}^{N-1}) \cap \mathfrak{C}^{1,\alpha}(\mathbb{R}^{N-1})$. Let $f \in C^1([0, +\infty))$ and u a bounded solution to (1). Suppose that

$$c_u = F(\sup_{\Omega} u). \tag{3}$$

Then, $\Omega = \mathbb{R}^N_+$ up to isometry and there exists $u_0 : [0, +\infty) \rightarrow [0, +\infty)$ strictly increasing such that

 $u(x) = u_0(x_N) \quad \forall x \in \Omega.$

Existing works Case N = 2 and 3 Sketch of the proof

Theorem

Let $\Omega \subset \mathbb{R}^3$ be a globally Lipschitz continuous epigraph bounded from below. Let $f \in C^1(\mathbb{R})$ and $u \in C^2(\overline{\Omega})$ be a bounded solution to (1).

Assume that one of the following assumptions hold true :

(H1) $f(t) \ge 0$, for any $t \ge 0$,

(H2) there exists $\zeta > 0$, such that $f(t) \ge 0$ on $[0, \zeta]$ and $f(t) \le 0$ on $[\zeta, +\infty)$,

(H3) there exists $0 < \zeta_1 < \zeta_2$ such that $f(t) \ge 0$ in $[0, \zeta_1]$, $f(t) \le 0$ in $[\zeta_1, \zeta_2]$ and f(t) > 0 in $(\zeta_2, +\infty)$. Then,

 $c_u = F(\sup_{\Omega} u).$

Existing works Case N = 2 and 3 Sketch of the proof

Theorem

Let $\Omega \subset \mathbb{R}^3$ be a globally Lipschitz continuous epigraph bounded from below. Let $f \in C^1(\mathbb{R})$ and $u \in C^2(\overline{\Omega})$ be a bounded solution to (1).

Assume that one of the following assumptions hold true :

(H1) $f(t) \ge 0$, for any $t \ge 0$,

(H2) there exists $\zeta > 0$, such that $f(t) \ge 0$ on $[0, \zeta]$ and $f(t) \le 0$ on $[\zeta, +\infty)$,

(H3) there exists $0 < \zeta_1 < \zeta_2$ such that $f(t) \ge 0$ in $[0, \zeta_1]$, $f(t) \le 0$ in $[\zeta_1, \zeta_2]$ and f(t) > 0 in $(\zeta_2, +\infty)$. Then,

 $c_u = F(\sup_{\Omega} u).$

Theorem

Let $\Omega \subset \mathbb{R}^3$ be an epigraph bounded from below with $g \in C^{2,\alpha}_{loc}(\mathbb{R}^2)$ such that $\|\nabla g\|_{C^{1,\alpha}(\mathbb{R}^2)} < +\infty$, $f \in C^1(\mathbb{R})$ such that $f(0) \ge 0$ and $u \in C^2(\overline{\Omega})$ be a bounded solution to (1). Then,

 $c_u = F(\sup_{\Omega} u).$

Existing works Case N = 2 and 3 Sketch of the proof

1 Introduction

2 Monotonicity result in an epigraph

- Case f(0) ≥ 0
- Case f(0) < 0
- Sketch of the proof : The moving plane

3 The Serrin's overdetermined problem

- Existing works
- Case N = 2 and 3
- Sketch of the proof

4 Annexe

Existing works Case N = 2 and 3 Sketch of the proof

A Poincaré-geometric's type formule

Theorem

Let Ω be an open subset of \mathbb{R}^N with C^3 boundary. Suppose that $u \in C^2(\overline{\Omega})$ satisfies (1) with f locally Lipschitz, and

 $\frac{\partial u}{\partial x_N}(x) > 0, \quad \text{ for any } x \in \Omega.$

Then, for any
$$R > 0$$

$$\int_{\Omega \cap B_{\sqrt{R}}} (|\nabla u|^2 \mathcal{K}^2 + |\nabla_T |\nabla u||^2) \le \frac{4}{\ln(R)^2} \int_{B_R \setminus B_{\sqrt{R}} \cap \Omega} \frac{|\nabla u(x)|^2}{|x|^2} dx, \tag{4}$$

and

$$-\int_{B_{R}\setminus B_{\sqrt{R}}\cap\Omega}\frac{|\nabla u(x)|^{2}}{|x|^{2}}dx \leq \int_{\sqrt{R}}^{R}\int_{B_{t}\setminus B_{\sqrt{R}}\cap\Omega}\frac{2|\nabla u(x)|^{2}}{t^{3}}dxdt + \int_{B_{R}\setminus B_{\sqrt{R}}\cap\Omega}\frac{|\nabla u|^{2}}{R^{2}}.$$
 (5)

Existing works Case N = 2 and 3 Sketch of the proof

Case N = 3.

Lemma

Let $\Omega \subset \mathbb{R}^3$ be a Lipschitz continuous epigraph with a boundary of class C^1 . Let $f \in C^1(\mathbb{R})$ and $u \in C^2(\overline{\Omega})$ be a bounded solution to (1). Assume that

$$rac{\partial u}{\partial x_N}(x) > 0$$
 for any $x \in \Omega$.

and

$$c_u = F(\|u\|_{L^{\infty}(\Omega)}),$$

Then, there exists C > 0, in such a way that

$$\int_{B_R\cap\Omega}|
abla u(x)|^2dx\leq CR^2$$
 for any $R>0.$

Existing works Case N = 2 and 3 Sketch of the proof

1 Introduction

2 Monotonicity result in an epigraph

- Case f(0) ≥ 0
- Case f(0) < 0
- Sketch of the proof : The moving plane

3 The Serrin's overdetermined problem

- Existing works
- Case N = 2 and 3
- Sketch of the proof

4 Annexe

Proof of proposition $(ilde{t} < +\infty)$ with f(0) > 0

Suppose that there exists $\delta \in (0, rac{ ilde{t}}{2})$ in such a way that

$$\forall k>0 \quad \exists \varepsilon_k \in (0,\frac{1}{k}) \quad \exists x^k \in \overline{\Sigma^g_{\delta,\tilde{t}-\delta}} \quad \text{such that } u(x^k) > u_{\tilde{t}+\varepsilon_k}(x^k).$$

Proof of proposition $(ilde{t} < +\infty)$ with f(0) > 0

Suppose that there exists $\delta \in (0, rac{ ilde{t}}{2})$ in such a way that

$$\begin{aligned} \forall k > 0 \quad \exists \varepsilon_k \in (0, \frac{1}{k}) \quad \exists x^k \in \overline{\Sigma^g_{\delta, \tilde{t} - \delta}} \quad \text{such that } u(x^k) > u_{\tilde{t} + \varepsilon_k}(x^k). \\ x^k_N \in [\delta, \tilde{t} - \delta], \text{ thus } x^k_N \to x_\infty \in [\delta, \tilde{t} - \delta]. \end{aligned}$$

Proof of proposition $(ilde{t} < +\infty)$ with f(0) > 0

Suppose that there exists $\delta \in (0, rac{ ilde{t}}{2})$ in such a way that

$$\begin{aligned} \forall k > 0 \quad \exists \varepsilon_k \in (0, \frac{1}{k}) \quad \exists x^k \in \overline{\Sigma^g_{\delta, \tilde{t} - \delta}} \quad \text{such that } u(x^k) > u_{\tilde{t} + \varepsilon_k}(x^k). \\ x^k_N \in [\delta, \tilde{t} - \delta], \text{ thus } x^k_N \to x_\infty \in [\delta, \tilde{t} - \delta]. \text{ We fix} \\ u_k(x) &= u(x' + (x^k)', x_N) \\ \text{where } x = (x', x_N) \in \Omega^k := \{(x', x_N) \in \mathbb{R}^N, x_N > g_k(x')\} \text{ and} \\ g_k(x') &= g(x' + (x^k)'). \end{aligned}$$

Proof of proposition $(ilde{t} < +\infty)$ with f(0) > 0

We have

$$\begin{array}{lll} & -\Delta u_k = f(u_k) & \text{in} & \Omega^k \\ & u_k > 0 & \text{in} & \Omega^k \\ & u_k = 0 & \text{on} & \partial \Omega^k \\ & u_k(0', x_N^k) > u_{k, \tilde{t} + \varepsilon_k}(0', x_N^k) & \\ & u_k(x) \le u_{k, \tilde{t}}(x) & \text{in} & \Sigma_{\tilde{t}}^{g_k} \end{array}$$

Proof of proposition $(ilde{t} < +\infty)$ with f(0) > 0

We have

$$\begin{array}{cccc} -\Delta u_k = f(u_k) & \text{in} & \Omega^k \\ u_k > 0 & \text{in} & \Omega^k \\ u_k = 0 & \text{on} & \partial \Omega^k \\ u_k(0', x_N^k) > u_{k,\tilde{t}+\varepsilon_k}(0', x_N^k) \\ u_k(x) \le u_{k,\tilde{t}}(x) & \text{in} & \Sigma_{\tilde{t}}^{g_k} \end{array}$$

We can show that there exists $g_\infty \in C^0(\mathbb{R}^{N-1})$ such that

$$g_k o g_\infty$$
 in $C^0_{\mathsf{loc}}(\mathbb{R}^{N-1}).$

We denote by Ω^{∞} its epigraph.

Proof of proposition $(ilde{t} < +\infty)$ with f(0) > 0

We have

$$\begin{array}{cccc} & -\Delta u_k = f(u_k) & \text{in} & \Omega^k \\ & u_k > 0 & \text{in} & \Omega^k \\ & u_k = 0 & \text{on} & \partial \Omega^k \\ & u_k(0', x_N^k) > u_{k,\tilde{t}+\varepsilon_k}(0', x_N^k) & \\ & u_k(x) \le u_{k,\tilde{t}}(x) & \text{in} & \Sigma_{\tilde{t}}^{g_k} \end{array}$$

We can show that there exists $g_\infty \in C^0(\mathbb{R}^{N-1})$ such that

$$g_k o g_\infty$$
 in $C^0_{\mathsf{loc}}(\mathbb{R}^{N-1}).$

We denote by Ω^{∞} its epigraph. And there exists $u_{\infty} \in C^2(\Omega^{\infty})$ such that

$$u_k \to u_\infty$$
 in $C^0_{\text{loc}}(\Omega^\infty)$.

Proof of proposition $(ilde{t} < +\infty)$ with f(0) > 0

Moreover u_{∞} solves

$$\left\{ \begin{array}{ccc} -\Delta u_{\infty} = f(u_{\infty}) & \text{ in } \quad \Omega^{\infty}, \\ u_{\infty} \geqslant 0 & \text{ in } \quad \Omega^{\infty}, \\ u_{\infty} = 0 & \text{ on } \quad \partial \Omega^{\infty}, \\ u_{\infty}(0', x_{\infty}) > u_{\infty, \tilde{t}}(0', x_{\infty}), & \\ u_{\infty}(x) \le u_{\infty, \tilde{t}}(x) & \text{ in } \quad \Sigma^{g_{\infty}}_{\tilde{t}}. \end{array} \right.$$

Proof of proposition $(ilde{t} < +\infty)$ with f(0) > 0

Moreover u_{∞} solves

$$\left(egin{array}{ccc} -\Delta u_{\infty}=f(u_{\infty}) & ext{in} & \Omega^{\infty}, \ u_{\infty}\geqslant 0 & ext{in} & \Omega^{\infty}, \ u_{\infty}=0 & ext{on} & \partial\Omega^{\infty}, \ u_{\infty}(0',x_{\infty})>u_{\infty, ilde{t}}(0',x_{\infty}), & \ u_{\infty}(x)\leq u_{\infty, ilde{t}}(x) & ext{in} & \Sigma^{ extsf{grames}}_{ ilde{t}}. \end{array}
ight.$$

We have

$$-\Delta u_{\infty} + L_f u_{\infty} \ge 0$$
 in Ω

thus by the maximum principle

either
$$u_{\infty} \equiv 0$$
 or either $u_{\infty} > 0$.

Proof of proposition $(\tilde{t} < +\infty)$ with f(0) > 0

If we fix $w = u_{\infty,\tilde{t}} - u_{\infty}$ then we have

$$\left\{ \begin{array}{ll} -\Delta w + L_f w \geq 0 & \text{in } \Sigma_{\tilde{t}}^{g_{\infty}}, \\ w \geq 0 & \text{in } \Sigma_{\tilde{t}}^{g_{\infty}}, \\ w(0', x_{\infty}) = 0 \end{array} \right.$$

Proof of proposition $(\tilde{t} < +\infty)$ with f(0) > 0

If we fix $w = u_{\infty,\tilde{t}} - u_{\infty}$ then we have

$$\left\{ \begin{array}{ll} -\Delta w + L_f w \geq 0 & \text{in} \quad \Sigma^{g_{\infty}}_{\tilde{t}}, \\ w \geq 0 & \text{in} \quad \Sigma^{g_{\infty}}_{\tilde{t}}, \\ w(0', x_{\infty}) = 0 \end{array} \right.$$

Therefore, by the maximum principle $w \equiv 0$ in connected componant of $\Sigma_{\tau}^{g_{\infty}}$ which contains $(0', x_{\infty})$.

Theorem (Hopf's lemma)

Let $\Omega \subset \mathbb{R}^N$ be a domain and $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ and $c \in L^\infty(\Omega)$ such that

$$\left\{\begin{array}{rrr} -\Delta u + cu \geqslant 0 & in & \Omega \\ u \geqslant 0 & in & \Omega \end{array}\right.$$

Then

1 If there exists $x_0 \in \Omega$ such that $u(x_0) = 0$ then

 $u \equiv 0$ in Ω .

Ifnot

u > 0 in Ω ,

and if $y_0 \in \partial \Omega$, $u(y_0) = 0$, and Ω satisfies the interior ball condition at y_0 then

$$\frac{\partial u}{\partial \nu}(y_0) < 0.$$

where ν is the exterior unit normal to Ω at y_0 .