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Semilinear Poisson’s equation :


−∆u = f (u) in Ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω,
∂u
∂η = c on ∂Ω,

(1)

where
u ∈ C2(Ω) is a classical solution.
Ω = RN or Ω ⊂ RN is an epigraph, i.e

{x = (x ′, xN) ∈ RN , xN > g(x ′)},

where g : RN−1 → R is a differentiable function.
f : R → R is a differentiable function on R or
Lipschitz-continuous function on R.
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Symmetry results general

Theorem (B., Farina, 2025)

Let Ω = RN
+ or Ω ⊂ RN be a domain of class C3. Let

f ∈ Liploc([0, +∞)) and let u ∈ C2(Ω) be a solution to (1) such that∫
B(0,R)∩Ω

|∇u|2 = o(R2 ln R) as R −→ ∞. (2)

If u is monotone, i.e.,

∂u
∂xN

(x) > 0 ∀x ∈ Ω, (3)

then, Ω = RN
+ up to isometry and there exists u0 : R → (0, +∞) strictly

increasing such that

u(x) = u0(xN) ∀x ∈ RN
+.
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Monotonicity results

Theorem (B., Farina, Sciunzi, 2025)

Let Ω be a globally Lipschitz continuous epigraph bounded from
below, f ∈ Lip([0, +∞)) with f (0) ≥ 0 and let u be a classical
solution of 

−∆u = f (u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(4)

Assume that u have at most exponential growth on finite strip
then u is strictly increasing in the xN−direction, i.e.

∂u
∂xN

(x) > 0 ∀x ∈ Ω.
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Monotonicity results

Remark If f is not Lipschitz continuous then Theorem 2 is false.
Indeed

u(x) =


0 if 0 ≤ xN ≤ 1,

(1 − (xN − 2)4)4 if 1 < xN ≤ 3,
(1 − (xN − 4)4)4 if 3 < xN ≤ 4,

1 if xN > 4,

is a classical solution of (4) with

f (t) =


0 if t < 0,

−192(t(1 − t 1
4 )) 1

2 (1 − 5
4 t 1

4 ) if 0 ≤ t ≤ 1,
0 if t > 1.

ĺ
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Monotonicity results

Theorem (B., Farina, 2025)

Let Ω be a smooth enough epigraph bounded from below,
f ∈ Liploc([0, +∞)) with f (0) < 0 and let u be a classical solution
of (1) with c ̸= 0 Assume that

∇u is bounded on finite strips.

Then u is strictly increasing in the xN−direction, i.e.

∂u
∂xN

(x) > 0 ∀x ∈ Ω.
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Monotonicity results

Theorem (Farina, Sciunzi, 2017)

Let f ∈ Liploc([0, +∞)) and u ∈ C2(R2
+) be a classical solution of

−∆u = f (u) in R2
+,

u > 0 in R2
+,

u = 0 on ∂R2
+.

Then u is strictly increasing in the x2−direction, i.e.

∂u
∂x2

(x) > 0 ∀x ∈ R2
+.
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Theorem (B., Farina, 2025)

Let Ω ⊂ R2 be a smooth enough epigraph bounded from below
and let u ∈ C2(Ω) be a classical solution of (1). Assume that
f ∈ Liploc([0, +∞)), f (0) ≥ 0 and

∇u ∈ L∞(Ω);

Then, Ω = R2
+ up to a vertical translation and there exists

u0 : [0, +∞) → (0, +∞) strictly increasing such that

u(x) = u0(x2) ∀x ∈ R2
+.

Remark : if ∇u /∈ L∞(Ω) then Theorem (5) is false (see
u(x1, x2) = x2ex1 in R2

+)
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Theorem (B., Farina, 2025)

Let Ω ⊂ R2 be a smooth enough epigraph bounded from below
and let u ∈ C2(Ω) be a classical solution of (1). Assume that :{

f ∈ Lip([0, +∞)), f (0) ≥ 0, f (t) ≤ 0 in (0, +∞),
u(x) = o(|x | ln

1
2 |x |), as |x | −→ ∞.

Then, Ω = R2
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u0 : [0, +∞) → (0, +∞) strictly increasing such that

u(x) = u0(x2) ∀x ∈ R2
+.



Introduction
Symmetry results in an epigraph

Classification results
Annexe

Case of an epigraph in dimensions N = 2, 3
Case of the whole space
Particuler case of the half-space

Theorem (B., Farina, 2025)

Let Ω ⊂ R3 be a smooth enough epigraph bounded from below
and let u ∈ C2(Ω) be a classical solution of (1). Assume that :{

f ∈ Lip([0, +∞)), f (t) ≥ 0 in (0, +∞),
u(x) = o(ln |x |), as |x | −→ ∞.

Then, Ω = R3
+ up to a vertical translation and there exists

u0 : [0, +∞) → (0, +∞) strictly increasing such that

u(x) = u0(x3) ∀x ∈ R3
+.

Remark : All previous Theorem hold true even if c = 0.
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Let f ∈ C1(R), we say that a solution u of

−∆u = f (u) in Ω,

is stable if, for any ϕ ∈ C1
c (Ω), there holds∫

Ω
f ′(u)ϕ2 ≤

∫
Ω

|∇ϕ|2.

Theorem (Dupaigne, Farina, 2022)

Assume that u ∈ C2(RN) is bounded below and that u is a stable
solution of

−∆u = f (u) in RN .

where f : R :→ R is locally Lipschitz and nonnegative. If N ≤ 10,
then u must be constant.

Remark : If u is not bounded below then the latter does not hold
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Symmetry results for stable solutions

Theorem (Work in progress)

Let N ≥ 2 and u ∈ C2(RN) be a stable solution of

−∆u = f (u) in RN ,

where f ∈ C1(R). Assume that∫
B(0,R)

|∇u|2 = O(R2 ln R) as R → +∞. (5)

Then, either
1- u is constant,

or,
2- u is a function of xN (up to a rotation) and monotone in xN .
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Symmetry results for stable solutions

Theorem (Work in progress)

Let 2 ≤ N ≤ 4 and u ∈ C2(RN) a stable solution of

− ∆u = f (u) in RN .

where f ∈ C1(R). Assume that :
H1- ∃ζ ∈ R such that f (t) ≥ 0 on (−∞, ζ] and f (t) ≤ 0 on

(ζ, +∞),

H2- |u(x)| = O(|x |
4−N

2 ln1/2 |x |) as |x | → +∞.
Then there exists u0 : R → R such that, up to a rotation,

u(x) = u0(xN) for any x ∈ RN .
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Remarks :

1 Note that there is no assumption on the sign of u.

2 u is not necessary bounded below.
3 The stability of the solution is necessary.

(ex : u(x) = x2 sin(x1)) .
4 Consider u(x) = x1x2 then u satisfies −∆u = 0 in RN .

However, u is not one-dimensional.
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Theorem (Work in progress)

Let 2 ≤ N ≤ 4 and u ∈ C2(RN
+) a stable solution of{

−∆u = f (u) in RN
+,

∂u
∂xN

= 0 on ∂RN
+.

where f ∈ C1(R). Assume that :
H1- ∃ζ ∈ R such that f (t) ≥ 0 on (−∞, ζ] and f (t) ≤ 0 on

(ζ, +∞),

H2- |u(x)| = O(|x |
4−N

2 ln1/2 |x |) as |x | → +∞.
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Symmetry results for stable solutions

Theorem (Work in progress)

Let 2 ≤ N ≤ 4 and u ∈ C2(RN
+) a solution of

−∆u = f (u) in RN
+,

u > 0 on RN
+.

u = 0 on ∂RN
+.

where f ∈ Lip(R) is non-negative and non-decreasing. Assume
that :

u(x) = o(|x |
4−N

2 ln1/2 |x |) as |x | → +∞.

Then there exists u0 : R+ → R+ an increasing function such that,
up to a rotation,

u(x) = u0(xN) for any x ∈ RN
+.
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Dimensions 2 ≤ N ≤ 11

Theorem (B., A. Farina, 2025)
Let Ω be an epigraph defined by a function g Lipschitz continuous
bounded from below. Let u ∈ C2(Ω) ∩ C0(Ω) be a bounded
classical solution to

−∆u = f (u) in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω.

Assume that f ∈ C1([0, +∞)), f (t) > 0 for t > 0 and
2 ≤ N ≤ 11, then u ≡ 0 and f (0) = 0.
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Remarks :

This Theorem holds even if g is not Lipschitz continuous : see
the following examples :

1 g is coercive (i.e lim
|x |→+∞

g(x) = +∞)

2 g(x1) = ex1 , g(x1, . . . , xN−1) = (x1)2 +
∏N−1

j=2 sin(jxj).
If f is not positive, then the Theorem is false. See
u(x) = sin2(xN).
The previous theorem remains true even for N ≥ 12, if we add
an assumption about the behaviour of f at the origin.
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Theorem (B., A.Farina, 2025)

Assume N ≥ 12 and let Ω be an epigraph defined by a function g
Lipschitz continuous bounded from below. Let u ∈ C2(Ω) ∩ C0(Ω)
be a bounded classical solution to

−∆u = f (u) in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω.

(6)

Assume that f ∈ C1([0, +∞)), f (t) > 0 for t > 0 and
lim inft→0+

f (t)
ts > 0, for some s ∈

[
0, N−3

N−5

)
.

Then u ≡ 0 and f (0) = 0.
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Remarks :

If f (0) > 0 then there exists no solution to the previous
Theorem.

The aim of this theorem is to study the case f (t) = tp

(p > 1). However, here, we are limited on the choice of
p.Indeed, we must have

1 < p ≤ s <
N − 3
N − 5 .
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Theorem (B., A.Farina, 2025)
Assume N ≥ 12 and let Ω be an epigraph defined by a function g
Lipschitz continuous bounded from below. Let u ∈ C2(Ω) ∩ C0(Ω)
be a bounded classical solution to

−∆u = up in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω.

Assume that

1 < p ≤ pc(N − 1) = (N − 3)2 − 4(N − 1) + 8
√

N − 2
(N − 3)(N − 11) .

Then u ≡ 0.
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Remarks :

For N ≥ 12, we have

N − 3
N − 5 <

(N − 3)2 − 4(N − 1) + 8
√

N − 2
(N − 3)(N − 11) .

Example : For N = 12, N−3
N−5 = 1.28 and pc(N − 1) = 6.92.

This Theorem works for others non linearities f .It must
satisfies

f ∈ C1([0, +∞)) ∩ C2((0, +∞)), f (0) = 0,

f > 0, nondecreasing and convex in (0, +∞)

s.t. limu→0+
f ′(u)2

f (u)f ′′(u) := q0 ∈ [0, +∞]

(7)
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Theorem (B., A.Farina, 2025)

Assume N ≥ 12 and let Ω be an epigraph defined by a function
g ∈ G. Also suppose that Ω is bounded from below and satisfies a
uniform exterior cone condition.
Let u ∈ C0(Ω) ∩ H1

loc(Ω) be a bounded distributional solution to
(6) where f satisfies (7).
Suppose that p0, the conjugate exponent of q0, satisfies

1 ≤ p0 < pc(N − 1), (8)

where pc is the Jospeh-Lundgren stability exponent given by

pc(N) = (N − 2)2 − 4N + 8
√

N − 1
(N − 2)(N − 10) .

Then u ≡ 0.
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Proof of proposition (t̃ < +∞) with f (0) > 0

Suppose that there exists δ ∈ (0, t̃
2) in such a way that

∀k > 0 ∃εk ∈ (0,
1
k ) ∃xk ∈ Σg

δ,t̃−δ
such that u(xk) > ut̃+εk (xk).

xk
N ∈ [δ, t̃ − δ], thus xk

N → x∞ ∈ [δ, t̃ − δ]. We fix

uk(x) = u(x ′ + (xk)′, xN)

where x = (x ′, xN) ∈ Ωk := {(x ′, xN) ∈ RN , xN > gk(x ′)} and

gk(x ′) = g(x ′ + (xk)′).
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Proof of proposition (t̃ < +∞) with f (0) > 0
We have 

−∆uk = f (uk) in Ωk

uk > 0 in Ωk

uk = 0 on ∂Ωk

uk(0′, xk
N) > uk,t̃+εk (0′, xk

N)
uk(x) ≤ uk,t̃(x) in Σgk

t̃

We can show that there exists g∞ ∈ C0(RN−1) such that

gk → g∞ in C0
loc(RN−1).

We denote by Ω∞ its epigraph.
And there exists u∞ ∈ C2(Ω∞) such that

uk → u∞ in C0
loc(Ω∞).
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Proof of proposition (t̃ < +∞) with f (0) > 0

Moreover u∞ solves

−∆u∞ = f (u∞) in Ω∞,
u∞ ⩾ 0 in Ω∞,
u∞ = 0 on ∂Ω∞,

u∞(0′, x∞) > u∞,t̃(0′, x∞),
u∞(x) ≤ u∞,t̃(x) in Σg∞

t̃ .

We have
−∆u∞ + Lf u∞ ≥ 0 in Ω

thus by the maximum principle

either u∞ ≡ 0 or either u∞ > 0.
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Proof of proposition (t̃ < +∞) with f (0) > 0

If we fix w = u∞,t̃ − u∞ then we have
−∆w + Lf w ≥ 0 in Σg∞

t̃ ,
w ≥ 0 in Σg∞

t̃ ,
w(0′, x∞) = 0

Therefore, by the maximum principle w ≡ 0 in connected
componant of Σg∞

t̃ which contains (0′, x∞).
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Theorem (Hopf’s lemma)

Let Ω ⊂ RN be a domain and u ∈ C2(Ω) ∩ C1(Ω) and c ∈ L∞(Ω) such that{
−∆u + cu ⩾ 0 in Ω

u ⩾ 0 in Ω

Then
1 If there exists x0 ∈ Ω such that u(x0) = 0 then

u ≡ 0 in Ω.

2 Ifnot
u > 0 in Ω,

and if y0 ∈ ∂Ω, u(y0) = 0, and Ω satisfies the interior ball condition at y0 then

∂u
∂ν

(y0) < 0.

where ν is the exterior unit normal to Ω at y0.
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