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Semilinear Poisson’s equation :

where
e u € C?(Q) is a classical solution.
o Q=RN or Q c RN is an epigraph, i.e

{x=(x,xn) € RN xy > g(x)},

where g : RV~-1 — R is a differentiable function.

o f: R — R is a differentiable function on R or
Lipschitz-continuous function on R.
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Symmetry results general

Theorem (B., Farina, 2025)

Let @ =RY or Q C RN be a domain of class C3. Let
f € Lip;pc([0,+00)) and let u € C*(Q) be a solution to (1) such that

/ |Vul?> = o(R?InR)  as R — oo. (2)
B(0,R)NQ
If u is monotone, i.e.,
o)
i(x) >0  WxeQ, (3)
N

then, Q = RY up to isometry and there exists ug : R — (0, 400) strictly
increasing such that

u(x) = up(xy) Vx € RY.
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Monotonicity results

Theorem (B., Farina, Sciunzi, 2025)

Let Q2 be a globally Lipschitz continuous epigraph bounded from
below, f € Lip([0,400)) with f(0) > 0 and let u be a classical
solution of
—Au="f(u) in Q
u>0 in  Q, (4)
u=20 on 0R.

Assume that u have at most exponential growth on finite strip
then u is strictly increasing in the xy—direction, i.e.

ou

8XN

(x) >0 VxeQ.
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Remark If f is not Lipschitz continuous then Theorem 2 is false.

Indeed
0 if OSXNS].,
(x) = (1—(xny—2)H* if 1<xy<3,
PIOZY 1= (=" if 3<xy<4,
1 if xy >4,

is a classical solution of (4) with
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Monotonicity results

Remark If f is not Lipschitz continuous then Theorem 2 is false.

Indeed
0 if OSXNS].,
(x) = (1—(xny—2)H* if 1<xy<3,
PIOZY 1= (=" if 3<xy<4,
1 if xy >4,

is a classical solution of (4) with

0 if t<0,
F(£) =3 —192(t(1 —t3))2(1—3¢3) if 0<t<1, [
0 if t>1.
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Monotonicity results

Theorem (B., Farina, 2025)

Let Q be a smooth enough epigraph bounded from below,
f € Lipoc([0,4+00)) with f(0) < 0 and let u be a classical solution
of (1) with ¢ # 0 Assume that

Vu is bounded on finite strips.

Then u is strictly increasing in the xy—direction, i.e.

ou

0 vVxeQ.
B (x) > x €
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Monotonicity results

Theorem (Farina, Sciunzi, 2017)

Let f € Lipjoc([0, +00)) and u € Cz(ﬁ) be a classical solution of

—Au=f(u) in R2,
u>0 in Ri,
u=20 on 8R2+.

Then u is strictly increasing in the xp—direction, i.e.

ou

7 (x) >0 VxeR3.
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Theorem (B., Farina, 2025)

Let Q C R? be a smooth enough epigraph bounded from below
and let u € C?(Q) be a classical solution of (1). Assume that
f € Lip,c([0,+00)), f(0) > 0 and

Vu e L*(Q);

Then, Q = Ri up to a vertical translation and there exists
up : [0, +00) — (0, +00) strictly increasing such that

u(x) = ug(x2) Vx € R2.
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Theorem (B., Farina, 2025)

Let Q C R? be a smooth enough epigraph bounded from below
and let u € C?(Q) be a classical solution of (1). Assume that
f € Lip;,([0,4+0)), £(0) > 0 and

Vu e L*(Q);

Then, Q = Ri up to a vertical translation and there exists
up : [0, +00) — (0, +00) strictly increasing such that

u(x) = ug(x2) Vx € R2.

Remark : if Vu ¢ L*°(Q2) then Theorem (5) is false (see
u(x1,x0) = x2€ in R?)
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Theorem (B., Farina, 2025)

Let Q C R? be a smooth enough epigraph bounded from below
and let u € C?(Q) be a classical solution of (1). Assume that :

{ f € Lip([0,+00)), f(0)>0, f(t)<0 in (0,400),
u(x) = o(|x|In2 |x|),  as |x| — oo.

Then, Q = ]R%r up to a vertical translation and there exists
up : [0,4+00) — (0, +00) strictly increasing such that

u(x) = up(x2) Vx € R3.




Case of an epigraph in dimensions N = 2, 3
Case of the whole sf
Particuler case of th

Symmetry results in an epigraph

Theorem (B., Farina, 2025)

Let Q C R3 be a smooth enough epigraph bounded from below
and let u € C?(Q) be a classical solution of (1). Assume that :

{ f e Lip([0,+0)), f(t)>0 in (0,+00),
u(x) = o(In|x|), as |x| — oo.

Then, Q = Rﬁr up to a vertical translation and there exists
up : [0,4+00) — (0, +00) strictly increasing such that

u(x) = up(xs) Vx e R3.
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Theorem (B., Farina, 2025)

Let Q C R3 be a smooth enough epigraph bounded from below
and let u € C?(Q) be a classical solution of (1). Assume that :

{ f e Lip([0,+0)), f(t)>0 in (0,+00),
u(x) = o(In|x|), as |x| — oo.

Then, Q = Rﬁr up to a vertical translation and there exists
up : [0,4+00) — (0, +00) strictly increasing such that

u(x) = up(xs) Vx e R3.

Remark : All previous Theorem hold true even if ¢ = 0.
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Let f € C}(R), we say that a solution u of
—Au=f(u) inQ,

is stable if, for any ¢ € C1(), there holds

[ 7w < [ vep.
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Symmetry results in an epigraph

Let f € C}(R), we say that a solution u of
—Au=f(u) inQ,

is stable if, for any ¢ € C1(), there holds
[ e < [ [vop
Q Q

Theorem (Dupaigne, Farina, 2022)

Assume that u € C?(RN) is bounded below and that u is a stable
solution of

—Au=f(u) inRV,

where f : R :— R is locally Lipschitz and nonnegative. If N < 10,
then u must be constant.
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Particuler case of the half-space

Let f € C}(R), we say that a solution u of
—Au=f(u) inQ,

is stable if, for any ¢ € C1(), there holds
[ e < [ [vop
Q Q

Theorem (Dupaigne, Farina, 2022)

Assume that u € C?(RN) is bounded below and that u is a stable
solution of

—Au=f(u) inRV,

where f : R :— R is locally Lipschitz and nonnegative. If N < 10,
then u must be constant.

Remark : If u is not bounded below then the latter does not hold
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Symmetry results for stable solutions

Theorem (Work in progress)
Let N > 2 and u € C?(RN) be a stable solution of
—Au=f(u) inRV,

where f € CY(R). Assume that
/ |Vu|? = O(R?InR) as R — +oc. (5)
B(0,R)

Then, either
1- u is constant,
or,

2- u is a function of xy (up to a rotation) and monotone in xy.
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Symmetry results for stable solutions

Theorem (Work in progress)
Let2 < N < 4 and u € C?(RN) a stable solution of
— Au=f(u) inRV.

where f € CY(R). Assume that :
H1- 3¢ € R such that f(t) > 0 on (—o0,(] and f(t) <0 on
(¢, +o0),

H2- u(x)] = O(x|*Z" InY/2 |x|) as |x| — +oo.

Then there exists ug : R — R such that, up to a rotation,

u(x) = uo(xn) for any x € RV,
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@ u is not necessary bounded below.

© The stability of the solution is necessary.
(ex : u(x) = xasin(x1)) .
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Symmetry results in an epigraph

Remarks :

© Note that there is no assumption on the sign of u.

@ u is not necessary bounded below.

© The stability of the solution is necessary.
(ex : u(x) = xasin(x1)) .

@ Consider u(x) = x1x» then u satisfies —Au = 0 in RV,
However, u is not one-dimensional.
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Symmetry results for stable solutions

Theorem (Work in progress)

Let2< N <4 andue C%@) a stable solution of

{—Au:f(u) in RN,

ou __ N
M—O on 8R+

where f € CY(R). Assume that :
H1- 3¢ € R such that f(t) > 0 on (—o0,(] and f(t) <0 on
(¢, +o0),

H2- u(x)] = O(x|*Z" InY/2 |x|) as |x| — +oo.
Then there exists ug : R — R such that, up to a rotation,

u(x) = uwo(xy) for any x € RV,
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Symmetry results for stable solutions

Theorem (Work in progress)

Let2 < N<4anduc C2(Rj¥) a solution of

—Au=f(u) in R,
u>0 on ]Ri’.
u=20 on ORN.

where f € Lip(R) is non-negative and non-decreasing. Assume
that : —n
u(x) = o(|x| = In*/?|x]) as |x| = +oo.

Then there exists ug : RT™ — R an increasing function such that,
up to a rotation,

u(x) = ug(xn) for any x € RY.
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Dimensions 2 < N < 11

Theorem (B., A. Farina, 2025)

Let Q2 be an epigraph defined by a function g Lipschitz continuous
bounded from below. Let u € C2(Q) N C°(Q) be a bounded
classical solution to

—Au="f(u) in Q
u>0 in  Q,
u=20 on 0.

Assume that f € C1([0,+c0)), f(t) >0 for t > 0 and
2< N <11, then u=0 and f(0) = 0.
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@ This Theorem holds even if g is not Lipschitz continuous : see
the following examples :

@ g is coercive (i.e  lim g(x) = +o0)

|x| =400
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@ This Theorem holds even if g is not Lipschitz continuous : see
the following examples :

@ g is coercive (i.e  lim g(x) = +o0)

|x| =400

@ g(x1) = €%, glx....,xn-1) = (x1)> + [T\ sin(jx)).
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the following examples :

@ g is coercive (i.e  lim g(x) = +o0)

|x| =400
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e If f is not positive, then the Theorem is false. See
u(x) = sin?(xy).



Classification results

Remarks :

@ This Theorem holds even if g is not Lipschitz continuous : see
the following examples :

@ g is coercive (i.e  lim g(x) = +o0)

|x| =400
@ g(x) = e, glxi,...xw-1) = (x1)° + [[}5" sin(ixy).
e If f is not positive, then the Theorem is false. See
u(x) = sin?(xy).
@ The previous theorem remains true even for N > 12, if we add
an assumption about the behaviour of f at the origin.
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Theorem (B., A.Farina, 2025)

Assume N > 12 and let Q) be an epigraph defined by a function g
Lipschitz continuous bounded from below. Let u € C?(Q) N C°(Q)
be a bounded classical solution to

—Au="f(u) in Q,
u>0 in  Q, (6)
u=20 on 0f.

Assume that f € C1([0,+c0)), f(t) >0 for t > 0 and
liminf,_ o+ @ > 0, for some s € {O, %—:2)

Then u=0 and f(0) = 0.
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Remarks :

@ If £(0) > 0 then there exists no solution to the previous
Theorem.
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(p > 1). However, here, we are limited on the choice of
p.



Classification results

Remarks :

@ If £(0) > 0 then there exists no solution to the previous
Theorem.

@ The aim of this theorem is to study the case f(t) = tP
(p > 1). However, here, we are limited on the choice of
p.Indeed, we must have

N -3

l<p<s<——2
NV
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Theorem (B., A.Farina, 2025)

Assume N > 12 and let Q) be an epigraph defined by a function g
Lipschitz continuous bounded from below. Let u € C?(2) N C%(Q)
be a bounded classical solution to

—Au=uP in Q,
u>0 in €,
u=20 on 0fQ.

Assume that

(N—3)2—4(N—-1)+8/N -2

1<p<p(N—-1)= (N =3)(N —11)

Then u = 0.
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Classification results

Remarks :

@ For N > 12, we have

N—-3 (N-3)2—-4N-1)+8/N-2

N_5 " (N —3)(N—11)
Example : For N =12, §=2 =1.28 and p.(N — 1) = 6.92.
@ This Theorem works for others non linearities f.lt must

satisfies

f € CY([0,+00)) N C3((0,+00)), £(0) =0,

f > 0, nondecreasing and convex in (0, +00) (7)

!/ u 2
st limy_ gt % = qo € [0, +o]
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Theorem (B., A.Farina, 2025)

Assume N > 12 and let ) be an epigraph defined by a function

g € G. Also suppose that Q0 is bounded from below and satisfies a
uniform exterior cone condition.

Let u € C°(Q) N H;,(Q) be a bounded distributional solution to
(6) where f satisfies (7).

Suppose that pg, the conjugate exponent of qq, satisfies
1 < po < pe(N—1), (8)
where p. is the Jospeh-Lundgren stability exponent given by

(N—-2)2—4N +8yN -1
(N —2)(N — 10) ‘

pc(N) =

Then u = 0.
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Proof of proposition (f < +00) with f(0) > 0

Suppose that there exists 6 € (0, %) in such a way that

1 P
vk>0 Jek€(0,,) Ix e T8, such that u(x*) > ugy., (x¥).
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Proof of proposition (f < +00) with f(0) > 0

Suppose that there exists 6 € (0, %) in such a way that
1 -
vk>0 Jek€(0,,) Ix e T8, such that u(x*) > ugy., (x¥).
xf € [0, — 9], thus x§ — xoo € [, T — &]. We fix
ue(x) = u(x' + (x*)', x)
where x = (X', xy) € QX := {(x, xn) € RN, xy > gi(x’)} and

gu(x') = g(x + (x")).
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We have
—Auy = f(ug) in QK
ug >0 in QK
u, =0 on 90k

uk(0 vXII\<I) > Uk,?—i—ek(olaxll\(I)
uk(x) < uz(x) in X%
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We have
—Auy = f(ug) in QK
ue >0 in QK
u, =0 on 90k
( 7XII\<I) > uk,f—l—ak(olaxll\(/)
uk(x) < uz(x) in X%

We can show that there exists go, € CO(RV=1) such that
gk = g0 in GR(RMTY).

We denote by Q its epigraph.
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Proof of proposition (f < +00) with f(0) > 0

We have
—Auy = f(ug) in QK
ue >0 in QK
u, =0 on 90k
( 7XII\<I) > uk,f—l—ak(olaxll\(/)
uk(x) < uz(x) in X%

We can show that there exists go, € CO(RV=1) such that
gk = g0 in GR(RMTY).

We denote by Q its epigraph.
And there exists uy, € C2(Q%) such that

U = U in G2 (Q%).
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Proof of proposition (f < +00) with f(0) > 0

Moreover u, solves

—Aus = f(Us) in Q%
Uy =0 in Q%
Uso =0 on 0Q%>,

Uoo (0", Xo0) > oo #(0, Xo0),
Uso(X) < o 7(X) in X¥.
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Proof of proposition (f < +00) with f(0) > 0

Moreover u, solves

—Auso = f(Uso) in Q%
Uso = 0 in Q%>
Uso =0 on 0Q%>,
Uoo (0", Xo0) > oo #(0, Xo0),
Uso(X) < o 7(X) in X¥.

We have
—Ause + Lftuge >0 in Q

thus by the maximum principle

either us,, =0  or either uy, > 0.
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Proof of proposition (f < +00) with f(0) > 0

If we fix w = Uy, 3 — Us then we have

—Aw+Liw >0 in Z?‘”,
w >0 in Z?"O,
w(0', %) =0
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Proof of proposition (f < +00) with f(0) > 0

If we fix w = Uy, 3 — Us then we have

—Aw+Liw >0 in Z?‘”,
w >0 in Z?"O,
w(0', %) =0

Therefore, by the maximum principle w = 0 in connected
componant of ¥£ which contains (0', xoo).
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Theorem (Hopf's lemma)

Let Q C RN be a domain and u € C?(Q) N CY(Q) and c € L>®(Q) such that

—Au+cu>0 in Q
u>0 in Q

Then
@ If there exists xg € Q such that u(xo) = 0 then

u=0 in Q.

Q Ifnot

u>0 in Q

and if yo € 0, u(yo) = 0, and Q2 satisfies the interior ball condition at yy then

ou
5()/0) <0.

where v is the exterior unit normal to € at yy.
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